Suppr超能文献

基于非线性轮-弹簧加载倒立摆模型的跳跃控制:单自由度腿部轮式双足机器人的验证

Jump Control Based on Nonlinear Wheel-Spring-Loaded Inverted Pendulum Model: Validation of a Wheeled-Bipedal Robot with Single-Degree-of-Freedom Legs.

作者信息

Gao Jingsong, Jin Hongzhe, Gao Liang, Zhu Yanhe, Zhao Jie, Cai Hegao

机构信息

School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150080, China.

出版信息

Biomimetics (Basel). 2025 Apr 17;10(4):246. doi: 10.3390/biomimetics10040246.

Abstract

Jumping is a fundamental capability for wheeled-bipedal robots (WBRs) navigating unstructured terrains, with jump height and stability serving as indicators of the robot's environmental adaptability. However, existing trajectory planning methods demand high output capacity from the joints and fail to balance computational load with trajectory tracking performance. This limitation hinders most robots from experimental validation. To address these challenges, this study presents an optimized virtual model, trajectory planning strategy, and control method. These solutions enhance both the height and stability of jumps while ensuring real-time execution on physical robots. Firstly, inspired by the human jumping mechanism, a Nonlinear Wheel-Spring-Loaded Inverted Pendulum (NW-SLIP) model was originally proposed as the virtual model for trajectory planning. The jump height is increased by 3.4 times compared to the linear spring model. Then, cost functions are established based on this virtual model, and the trajectory for each stage is iteratively optimized using Quadratic Programming (QP) and a bisection method. This leads to a 21.5% increase in the maximum jump height while reducing the peak joint torque by 14% at the same height. This significantly eases execution and enhances the robot's trajectory-tracking ability. Subsequently, a leg statics model is introduced alongside the kinematics model to map the relationship between the virtual model and joint space. This approach improves trajectory tracking performance while circumventing the intricate calculation of the dynamics model, thereby enhancing jump consistency and stability. Finally, the proposed trajectory planning and jump control method is validated through both simulations and real-world experiments, demonstrating its feasibility and effectiveness in practical robotic applications.

摘要

跳跃是轮式双足机器人(WBR)在非结构化地形中导航的一项基本能力,跳跃高度和稳定性是衡量机器人环境适应性的指标。然而,现有的轨迹规划方法对关节的输出能力要求很高,并且无法在计算负载和轨迹跟踪性能之间取得平衡。这一限制阻碍了大多数机器人进行实验验证。为了应对这些挑战,本研究提出了一种优化的虚拟模型、轨迹规划策略和控制方法。这些解决方案在确保在物理机器人上实时执行的同时,提高了跳跃的高度和稳定性。首先,受人类跳跃机制的启发,最初提出了一种非线性轮式弹簧加载倒立摆(NW-SLIP)模型作为轨迹规划的虚拟模型。与线性弹簧模型相比,跳跃高度提高了3.4倍。然后,基于该虚拟模型建立成本函数,并使用二次规划(QP)和二分法对每个阶段的轨迹进行迭代优化。这使得最大跳跃高度增加了21.5%,同时在相同高度下峰值关节扭矩降低了14%。这显著减轻了执行负担并增强了机器人的轨迹跟踪能力。随后,引入腿部静力学模型以及运动学模型,以映射虚拟模型与关节空间之间的关系。这种方法提高了轨迹跟踪性能,同时规避了动力学模型的复杂计算,从而增强了跳跃的一致性和稳定性。最后,通过仿真和实际实验对所提出的轨迹规划和跳跃控制方法进行了验证,证明了其在实际机器人应用中的可行性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ac8/12024883/0669dc7543a0/biomimetics-10-00246-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验