Marcos-Ríos Daniel, Rochano-Ortiz Antonio, San Sebastián-Jaraba Irene, Fernández-Gómez María José, Méndez-Barbero Nerea, Oller Jorge
Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain.
Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
Cells. 2025 Apr 21;14(8):618. doi: 10.3390/cells14080618.
Thoracic aortic aneurysms (TAAs) pose a significant health burden due to their asymptomatic progression, often culminating in life-threatening aortic rupture, and due to the lack of effective pharmacological treatments. Risk factors include elevated hemodynamic stress on the ascending aorta, frequently associated with hypertension and hereditary genetic mutations. Among the hereditary causes, Marfan syndrome is the most prevalent, characterized as a connective tissue disorder driven by mutations that lead to life-threatening thoracic aortic ruptures. Similarly, mutations affecting the TGF-β pathway underlie Loeys-Dietz syndrome, while mutations in genes encoding extracellular or contractile apparatus proteins, such as ACTA2, are linked to non-syndromic familial TAA. Despite differences in genetic origin, these hereditary conditions share central pathophysiological features, including aortic medial degeneration, smooth muscle cell dysfunction, and extracellular remodeling, which collectively weaken the aortic wall. Recent evidence highlights mitochondrial dysfunction as a crucial contributor to aneurysm formation in Marfan syndrome. Disruption of the extracellular matrix-mitochondrial homeostasis axis exacerbates aortic wall remodeling, further promoting aneurysm development. Beyond its structural role in maintaining vascular integrity, the ECM plays a pivotal role in supporting mitochondrial function. This intricate relationship between extracellular matrix integrity and mitochondrial homeostasis reveals a novel dimension of TAA pathophysiology, extending beyond established paradigms of extracellular matrix remodeling and smooth muscle cell dysfunction. This review summarizes mitochondrial dysfunction as a potential unifying mechanism in hereditary TAA and explores how understanding mitochondrial dysfunction, in conjunction with established mechanisms of TAA pathogenesis, opens new avenues for developing targeted treatments to address these life-threatening conditions. Mitochondrial boosters could represent a new clinical opportunity for patients with hereditary TAA.
胸主动脉瘤(TAAs)因其无症状进展(常以危及生命的主动脉破裂告终)以及缺乏有效的药物治疗,而构成了重大的健康负担。危险因素包括升主动脉上血流动力学压力升高,这通常与高血压和遗传性基因突变有关。在遗传性病因中,马凡综合征最为常见,其特征是一种由导致危及生命的胸主动脉破裂的突变驱动的结缔组织疾病。同样,影响转化生长因子-β(TGF-β)信号通路的突变是洛伊斯-迪茨综合征的基础,而编码细胞外或收缩装置蛋白(如ACTA2)的基因突变与非综合征性家族性胸主动脉瘤有关。尽管遗传起源不同,但这些遗传性疾病具有共同的核心病理生理特征,包括主动脉中膜退变、平滑肌细胞功能障碍和细胞外重塑,这些共同削弱了主动脉壁。最近的证据表明,线粒体功能障碍是马凡综合征中动脉瘤形成的关键因素。细胞外基质-线粒体稳态轴的破坏加剧了主动脉壁重塑,进一步促进了动脉瘤的发展。细胞外基质(ECM)除了在维持血管完整性方面发挥结构作用外,在支持线粒体功能方面也起着关键作用。细胞外基质完整性与线粒体稳态之间的这种复杂关系揭示了胸主动脉瘤病理生理学的一个新层面,超越了已有的细胞外基质重塑和平滑肌细胞功能障碍范式。本综述总结了线粒体功能障碍作为遗传性胸主动脉瘤潜在的统一机制,并探讨了如何结合胸主动脉瘤发病机制的现有机制来理解线粒体功能障碍,为开发针对这些危及生命疾病的靶向治疗开辟新途径。线粒体增强剂可能为遗传性胸主动脉瘤患者带来新的临床机遇。
Am J Physiol Heart Circ Physiol. 2024-10-1
Circulation. 2021-5-25
J Hum Genet. 2016-1
Arterioscler Thromb Vasc Biol. 2023-8
Prog Cardiovasc Dis. 2013-5-15
Genes (Basel). 2021-1-27
Drug Des Devel Ther. 2025-8-26
Hypertens Res. 2024-10
Signal Transduct Target Ther. 2024-5-15
Biomed Pharmacother. 2024-5