病毒诱导癌症中的趋同机制:关于经典病毒、SARS-CoV-2及人工智能驱动解决方案的观点

Convergent Mechanisms in Virus-Induced Cancers: A Perspective on Classical Viruses, SARS-CoV-2, and AI-Driven Solutions.

作者信息

Rudroff Thorsten

机构信息

Turku PET Centre, University of Turku, Turku University Hospital, 20520 Turku, Finland.

出版信息

Infect Dis Rep. 2025 Apr 16;17(2):33. doi: 10.3390/idr17020033.

Abstract

This perspective examines the potential oncogenic mechanisms of SARS-CoV-2 through comparative analysis with established cancer-causing viruses, integrating classical virological approaches with artificial intelligence (AI)-driven analysis. The paper explores four key themes: shared oncogenic mechanisms between classical viruses and SARS-CoV-2 (including cell cycle dysregulation, inflammatory signaling, immune evasion, and metabolic reprogramming); the application of AI in understanding viral oncogenesis; the integration of neuroimaging evidence; and future research directions. The author presents novel hypotheses regarding SARS-CoV-2's potential oncogenic mechanisms, supported by recent PET/FDG imaging studies showing persistent metabolic alterations. The manuscript emphasizes the transformative potential of combining traditional virological methods with advanced AI technologies for better understanding and preventing virus-induced cancers, while highlighting the importance of long-term monitoring of COVID-19 survivors for potential oncogenic developments.

摘要

这篇综述通过与已确定的致癌病毒进行比较分析,将经典病毒学方法与人工智能(AI)驱动的分析相结合,探讨了SARS-CoV-2潜在的致癌机制。本文探讨了四个关键主题:经典病毒与SARS-CoV-2之间共同的致癌机制(包括细胞周期失调、炎症信号传导、免疫逃逸和代谢重编程);AI在理解病毒致癌作用中的应用;神经影像学证据的整合;以及未来的研究方向。作者提出了关于SARS-CoV-2潜在致癌机制的新假设,近期的PET/FDG成像研究显示出持续的代谢改变为其提供了支持。该手稿强调了将传统病毒学方法与先进的AI技术相结合,以更好地理解和预防病毒诱导的癌症的变革潜力,同时强调了对COVID-19幸存者进行长期监测以发现潜在致癌发展的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f3/12027309/70c8d95df114/idr-17-00033-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索