Suppr超能文献

神经影像学降维的未开发潜力:人工智能驱动的长期新冠疲劳多模态分析

The Untapped Potential of Dimension Reduction in Neuroimaging: Artificial Intelligence-Driven Multimodal Analysis of Long COVID Fatigue.

作者信息

Rudroff Thorsten, Klén Riku, Rainio Oona, Tuulari Jetro

机构信息

Turku PET Centre, University of Turku, Turku University Hospital, 20520 Turku, Finland.

出版信息

Brain Sci. 2024 Nov 29;14(12):1209. doi: 10.3390/brainsci14121209.

Abstract

This perspective paper explores the untapped potential of artificial intelligence (AI), particularly machine learning-based dimension reduction techniques in multimodal neuroimaging analysis of Long COVID fatigue. The complexity and high dimensionality of neuroimaging data from modalities such as positron emission tomography (PET) and magnetic resonance imaging (MRI) pose significant analytical challenges. Deep neural networks and other machine learning approaches offer powerful tools for managing this complexity and extracting meaningful patterns. The paper discusses current challenges in neuroimaging data analysis, reviews state-of-the-art AI approaches for dimension reduction and multimodal integration, and examines their potential applications in Long COVID research. Key areas of focus include the development of AI-based biomarkers, AI-informed treatment strategies, and personalized medicine approaches. The authors argue that AI-driven multimodal neuroimaging analysis represents a paradigm shift in studying complex brain disorders like Long COVID. While acknowledging technical and ethical challenges, the paper emphasizes the potential of these advanced techniques to uncover new insights into the condition, which might lead to improved diagnostic and therapeutic strategies for those affected by Long COVID fatigue. The broader implications for understanding and treating other complex neurological and psychiatric conditions are also discussed.

摘要

这篇观点论文探讨了人工智能(AI),特别是基于机器学习的降维技术在长新冠疲劳的多模态神经影像学分析中尚未开发的潜力。来自正电子发射断层扫描(PET)和磁共振成像(MRI)等模态的神经影像学数据的复杂性和高维度带来了重大的分析挑战。深度神经网络和其他机器学习方法为应对这种复杂性和提取有意义的模式提供了强大的工具。本文讨论了神经影像学数据分析中的当前挑战,回顾了用于降维和多模态整合的最新人工智能方法,并研究了它们在长新冠研究中的潜在应用。重点关注的关键领域包括基于人工智能的生物标志物的开发、基于人工智能的治疗策略以及个性化医疗方法。作者认为,人工智能驱动的多模态神经影像学分析代表了研究像长新冠这样的复杂脑部疾病的范式转变。在承认技术和伦理挑战的同时,本文强调了这些先进技术揭示该病症新见解的潜力,这可能会为受长新冠疲劳影响的人带来改进的诊断和治疗策略。还讨论了对理解和治疗其他复杂神经和精神疾病的更广泛影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/450c/11674449/66589fd902c5/brainsci-14-01209-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验