Hu Jie, Fu Yiben
Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.
National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
Membranes (Basel). 2025 Apr 1;15(4):101. doi: 10.3390/membranes15040101.
Helix-membrane interactions are key to membrane deformation and play significant biological roles. However, systematic studies on the mechanisms behind these interactions are limited. This study uses a continuum membrane model to investigate how shallowly inserted helices interact with biological membranes, focusing on membrane deformation and the cooperative effects of multiple helices. Our findings show that even short helices (2 nm in length) can induce anisotropic membrane deformation. Longer helices and deeper insertions result in more significant deformations, and the spatial arrangement of helices affects the nature of these deformations. The perturbation area (PA) and perturbation extent (PE) are quantified to describe membrane deformation, revealing stronger cooperative effects in parallel insertions and more complex deformations in other arrangements. Additionally, membrane properties, such as lipid composition, influence the extent of deformation. In multi-helix systems, we observe local clustering behavior when perturbations are strong enough, with cooperativity varying based on helix length, insertion depth, and membrane composition. This study provides criteria for helix cooperativity, advancing our understanding of helix-membrane interactions and their biological significance in processes like membrane remodeling.
螺旋-膜相互作用是膜变形的关键,并且发挥着重要的生物学作用。然而,关于这些相互作用背后机制的系统性研究有限。本研究使用连续膜模型来研究浅插入螺旋如何与生物膜相互作用,重点关注膜变形以及多个螺旋的协同效应。我们的研究结果表明,即使是短螺旋(长度为2纳米)也能诱导各向异性膜变形。更长的螺旋和更深的插入会导致更显著的变形,并且螺旋的空间排列会影响这些变形的性质。通过量化微扰面积(PA)和微扰程度(PE)来描述膜变形,结果显示平行插入时协同效应更强,其他排列方式下变形更复杂。此外,膜的性质,如脂质组成,会影响变形程度。在多螺旋系统中,当微扰足够强时,我们观察到局部聚集行为,其协同性会根据螺旋长度、插入深度和膜组成而变化。本研究为螺旋协同性提供了标准,增进了我们对螺旋-膜相互作用及其在膜重塑等过程中的生物学意义的理解。