Suppr超能文献

局部二值模式-循环生成对抗网络迁移:将图像风格从白天转换为夜晚

Local Binary Pattern-Cycle Generative Adversarial Network Transfer: Transforming Image Style from Day to Night.

作者信息

Almohamade Abeer, Kammoun Salma, Alsolami Fawaz

机构信息

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Applied College, Taibah University, Almadinah Almunawwarah 41911, Saudi Arabia.

出版信息

J Imaging. 2025 Mar 31;11(4):108. doi: 10.3390/jimaging11040108.

Abstract

Transforming images from day style to night style is crucial for enhancing perception in autonomous driving and smart surveillance. However, existing CycleGAN-based approaches struggle with texture loss, structural inconsistencies, and high computational costs. In our attempt to overcome these challenges, we produced LBP-CycleGAN, a new modification of CycleGAN that benefits from the advantages of a Local Binary Pattern (LBP) that extracts details of texture, unlike traditional CycleGAN, which relies heavily on color transformations. Our model leverages LBP-based single-channel inputs, ensuring sharper, more consistent night-time textures. We evaluated three model variations: (1) LBP-CycleGAN with a self-attention mechanism in both the generator and discriminator, (2) LBP-CycleGAN with a self-attention mechanism in the discriminator only, and (3) LBP-CycleGAN without a self-attention mechanism. Our results demonstrate that the LBP-CycleGAN model without self-attention outperformed the other models, achieving a superior texture quality while significantly reducing the training time and computational overhead. This work opens up new possibilities for efficient, high-fidelity night-time image translation in real-world applications, including autonomous driving and low-light vision systems.

摘要

将图像从白天风格转换为夜间风格对于增强自动驾驶和智能监控中的感知至关重要。然而,现有的基于CycleGAN的方法在纹理损失、结构不一致和高计算成本方面存在困难。为了克服这些挑战,我们开发了LBP-CycleGAN,这是CycleGAN的一种新改进,它受益于局部二值模式(LBP)的优势,LBP可以提取纹理细节,这与严重依赖颜色变换的传统CycleGAN不同。我们的模型利用基于LBP的单通道输入,确保夜间纹理更清晰、更一致。我们评估了三种模型变体:(1)在生成器和判别器中都具有自注意力机制的LBP-CycleGAN,(2)仅在判别器中具有自注意力机制的LBP-CycleGAN,以及(3)没有自注意力机制的LBP-CycleGAN。我们的结果表明,没有自注意力机制的LBP-CycleGAN模型优于其他模型,在显著减少训练时间和计算开销的同时,实现了更高的纹理质量。这项工作为包括自动驾驶和低光视觉系统在内的实际应用中的高效、高保真夜间图像翻译开辟了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/134d/12027804/0b059fe61d3a/jimaging-11-00108-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验