Li Ye, Sun Wenzhe, Li Zuhe, Guo Xiang
School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
J Imaging. 2025 Apr 10;11(4):116. doi: 10.3390/jimaging11040116.
Face anti-spoofing detection is crucial for identity verification and security monitoring. However, existing single-modal models struggle with feature extraction under complex lighting conditions and background variations. Moreover, the feature distributions of live and spoofed samples often overlap, resulting in suboptimal classification performance. To address these issues, we propose a jointly optimized framework integrating the Enhanced Channel Attention (ECA) mechanism and the Intra-Class Differentiator (ICD). The ECA module extracts features through deep convolution, while the Bottleneck Reconstruction Module (BRM) employs a channel compression-expansion mechanism to refine spatial feature selection. Furthermore, the channel attention mechanism enhances key channel representation. Meanwhile, the ICD mechanism enforces intra-class compactness and inter-class separability, optimizing feature distribution both within and across classes, thereby improving feature learning and generalization performance. Experimental results show that our framework achieves average classification error rates (ACERs) of 2.45%, 1.16%, 1.74%, and 2.17% on the CASIA-SURF, CASIA-SURF CeFA, CASIA-FASD, and OULU-NPU datasets, outperforming existing methods.
面部反欺骗检测对于身份验证和安全监控至关重要。然而,现有的单模态模型在复杂光照条件和背景变化下进行特征提取时面临困难。此外,真实样本和伪造样本的特征分布常常重叠,导致分类性能欠佳。为了解决这些问题,我们提出了一个联合优化框架,该框架集成了增强通道注意力(ECA)机制和类内鉴别器(ICD)。ECA模块通过深度卷积提取特征,而瓶颈重建模块(BRM)采用通道压缩-扩展机制来优化空间特征选择。此外,通道注意力机制增强了关键通道的表示。同时;ICD机制增强了类内紧凑性和类间可分离性,优化了类内和类间的特征分布,从而提高了特征学习和泛化性能。实验结果表明,我们的框架在CASIA-SURF、CASIA-SURF CeFA、CASIA-FASD和OULU-NPU数据集上实现了2.45%、1.16%、1.74%和2.17%的平均分类错误率(ACER),优于现有方法。