Suppr超能文献

渐进式迁移学习在人脸防欺骗中的应用。

Progressive Transfer Learning for Face Anti-Spoofing.

出版信息

IEEE Trans Image Process. 2021;30:3946-3955. doi: 10.1109/TIP.2021.3066912. Epub 2021 Mar 30.

Abstract

Face anti-spoofing (FAS) techniques play an important role in defending face recognition systems against spoofing attacks. Existing FAS methods often require a large number of annotated spoofing face data to train effective anti-spoofing models. Considering the attacking nature of spoofing data and its diverse variants, obtaining all the spoofing types in advance is difficult. This would limit the performance of FAS networks in practice. Thus, an online learning FAS method is highly desirable. In this paper, we present a semi-supervised learning based framework to tackle face spoofing attacks with only a few labeled training data (e.g.,  ∼  50 face images). Specifically, we progressively adopt the unlabeled data with reliable pseudo labels during training to enrich the variety of training data. We observed that face spoofing data are naturally presented in the format of video streams. Thus, we exploit the temporal consistency to consolidate the reliability of a pseudo label for a selected image. Furthermore, we propose an adaptive transfer mechanism to ameliorate the influence of unseen spoofing data. Benefiting from the progressively-labeling nature of our method, we are able to train our network on not only data of seen spoofing types (i.e., the source domain) but also unlabeled data of unseen attacking types (i.e., the target domain). In this way, our method can reduce the domain gap and is more practical in real-world anti-spoofing scenarios. Extensive experiments in both the intra-database and inter-database scenarios demonstrate that our method is on par with the state-of-the-art methods but employs remarkably less labeled data (less than 0.1% labeled spoofing data in a dataset). Moreover, our method significantly outperforms fully-supervised methods on cross-domain testing scenarios with the help of our progressive learning fashion.

摘要

人脸防欺骗(FAS)技术在保护人脸识别系统免受欺骗攻击方面起着重要作用。现有的人脸防欺骗方法通常需要大量标注的欺骗人脸数据来训练有效的反欺骗模型。考虑到欺骗数据的攻击性质及其多种变体,提前获得所有欺骗类型是困难的。这将限制 FAS 网络在实际中的性能。因此,非常需要一种在线学习的 FAS 方法。在本文中,我们提出了一种基于半监督学习的框架,仅使用少量标注的训练数据(例如,约 50 张人脸图像)来处理人脸欺骗攻击。具体来说,我们在训练过程中逐步采用带有可靠伪标签的未标注数据,以丰富训练数据的多样性。我们观察到人脸欺骗数据自然呈现为视频流的形式。因此,我们利用时间一致性来增强所选图像的伪标签的可靠性。此外,我们提出了一种自适应迁移机制来改善未见过的欺骗数据的影响。得益于我们方法的逐步标注性质,我们不仅可以在已见过的欺骗类型的数据(即源域)上训练我们的网络,还可以在未见过的攻击类型的未标注数据(即目标域)上训练。通过这种方式,我们的方法可以减少域差距,在实际的反欺骗场景中更实用。在内部数据库和跨数据库场景中的广泛实验表明,我们的方法与最先进的方法相当,但仅使用了显著较少的标注数据(在一个数据集中标注的欺骗数据少于 0.1%)。此外,在我们的渐进式学习方式的帮助下,我们的方法在跨域测试场景中明显优于完全监督的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验