Veseli Siniša, Hammonds John, Henke Steven, Parraga Hannah, Frosik Barbara, Schwarz Nicholas
Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA.
J Synchrotron Radiat. 2025 May 1;32(Pt 3):823-836. doi: 10.1107/S1600577525002115. Epub 2025 Apr 25.
User facility upgrades, new measurement techniques, advances in data analysis algorithms as well as advances in detector capabilities result in an increasing amount of data collected at X-ray beamlines. Some of these data must be analyzed and reconstructed on demand to help execute experiments dynamically and modify them in real time. In turn, this requires a computing framework for real-time processing capable of moving data quickly from the detector to local or remote computing resources, processing data, and returning results to users. In this paper, we discuss the streaming framework built on top of PvaPy, a Python API for the EPICS pvAccess protocol. We describe the framework architecture and capabilities, and discuss scientific use cases and applications that benefit from streaming workflows implemented on top of this framework. We also illustrate the framework's performance in terms of achievable data-processing rates for various detector image sizes.
用户设施升级、新的测量技术、数据分析算法的进步以及探测器能力的提升,使得在X射线光束线上收集到的数据量不断增加。其中一些数据必须按需进行分析和重建,以帮助动态执行实验并实时修改实验。反过来,这需要一个用于实时处理的计算框架,能够将数据从探测器快速移动到本地或远程计算资源,处理数据,并将结果返回给用户。在本文中,我们讨论了基于PvaPy构建的流框架,PvaPy是用于EPICS pvAccess协议的Python API。我们描述了框架架构和功能,并讨论了受益于在此框架之上实现的流工作流程的科学用例和应用。我们还根据各种探测器图像大小可实现的数据处理速率来说明该框架的性能。