Suppr超能文献

一种用于抑制因磁共振原始数据压缩导致的图像信噪比损失的框架。

A framework for constraining image SNR loss due to MR raw data compression.

作者信息

Restivo Matthew C, Campbell-Washburn Adrienne E, Kellman Peter, Xue Hui, Ramasawmy Rajiv, Hansen Michael S

机构信息

Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Rm B1D47, 10 Center Dr, Bethesda, MD, 20814, USA.

出版信息

MAGMA. 2019 Apr;32(2):213-225. doi: 10.1007/s10334-018-0709-5. Epub 2018 Oct 25.

Abstract

INTRODUCTION

Computationally intensive image reconstruction algorithms can be used online during MRI exams by streaming data to remote high-performance computers. However, data acquisition rates often exceed the bandwidth of the available network resources creating a bottleneck. Data compression is, therefore, desired to ensure fast data transmission.

METHODS

The added noise variance due to compression was determined through statistical analysis for two compression libraries (one custom and one generic) that were implemented in this framework. Limiting the compression error variance relative to the measured thermal noise allowed for image signal-to-noise ratio loss to be explicitly constrained.

RESULTS

Achievable compression ratios are dependent on image SNR, user-defined SNR loss tolerance, and acquisition type. However, a 1% reduction in SNR yields approximately four to ninefold compression ratios across MRI acquisition strategies. For free-breathing cine data reconstructed in the cloud, the streaming bandwidth was reduced from 37 to 6.1 MB/s, alleviating the network transmission bottleneck.

CONCLUSION

Our framework enabled data compression for online reconstructions and allowed SNR loss to be constrained based on a user-defined SNR tolerance. This practical tool will enable real-time data streaming and greater than fourfold faster cloud upload times.

摘要

引言

通过将数据传输到远程高性能计算机,计算密集型图像重建算法可在MRI检查期间在线使用。然而,数据采集速率常常超过可用网络资源的带宽,从而造成瓶颈。因此,需要进行数据压缩以确保快速的数据传输。

方法

通过对在此框架中实现的两个压缩库(一个自定义库和一个通用库)进行统计分析,确定了由于压缩而增加的噪声方差。相对于测量的热噪声限制压缩误差方差,可以明确限制图像信噪比损失。

结果

可实现的压缩比取决于图像信噪比、用户定义的信噪比损失容限和采集类型。然而,信噪比降低1%会使MRI采集策略的压缩比提高约4至9倍。对于在云端重建的自由呼吸电影数据,传输带宽从37MB/s降至6.1MB/s,缓解了网络传输瓶颈。

结论

我们的框架实现了用于在线重建的数据压缩,并允许根据用户定义的信噪比容限来限制信噪比损失。这个实用工具将实现实时数据流传输,并使云端上传时间加快四倍以上。

相似文献

1
A framework for constraining image SNR loss due to MR raw data compression.
MAGMA. 2019 Apr;32(2):213-225. doi: 10.1007/s10334-018-0709-5. Epub 2018 Oct 25.
2
Distributed MRI reconstruction using Gadgetron-based cloud computing.
Magn Reson Med. 2015 Mar;73(3):1015-25. doi: 10.1002/mrm.25213. Epub 2014 Mar 31.
3
Compressed sensing for reduction of noise and artefacts in direct PET image reconstruction.
Z Med Phys. 2014 Mar;24(1):16-26. doi: 10.1016/j.zemedi.2013.05.003. Epub 2013 Jun 10.
5
Computationally rapid method of estimating signal-to-noise ratio for phased array image reconstructions.
Magn Reson Med. 2011 Oct;66(4):1192-7. doi: 10.1002/mrm.22893. Epub 2011 Apr 4.
7
Gadgetron: an open source framework for medical image reconstruction.
Magn Reson Med. 2013 Jun;69(6):1768-76. doi: 10.1002/mrm.24389. Epub 2012 Jul 12.
8
Improved compressed sensing reconstruction for F magnetic resonance imaging.
MAGMA. 2019 Feb;32(1):63-77. doi: 10.1007/s10334-018-0729-1. Epub 2019 Jan 2.
9
Optimal sampling for "Noquist" reduced-data cine magnetic resonance imaging.
Med Phys. 2013 Jan;40(1):012302. doi: 10.1118/1.4770270.
10
MR physics in practice: how to optimize acquisition quality and time for cardiac MR imaging.
Magn Reson Imaging Clin N Am. 2015 Feb;23(1):1-6. doi: 10.1016/j.mric.2014.08.004.

本文引用的文献

1
Image Reconstruction is a New Frontier of Machine Learning.
IEEE Trans Med Imaging. 2018 Jun;37(6):1289-1296. doi: 10.1109/TMI.2018.2833635.
2
Image reconstruction by domain-transform manifold learning.
Nature. 2018 Mar 21;555(7697):487-492. doi: 10.1038/nature25988.
3
Evaluation of a Semi-automatic Right Ventricle Segmentation Method on Short-Axis MR Images.
J Digit Imaging. 2018 Oct;31(5):670-679. doi: 10.1007/s10278-018-0061-3.
4
Learning a variational network for reconstruction of accelerated MRI data.
Magn Reson Med. 2018 Jun;79(6):3055-3071. doi: 10.1002/mrm.26977. Epub 2017 Nov 8.
7
ISMRM Raw data format: A proposed standard for MRI raw datasets.
Magn Reson Med. 2017 Jan;77(1):411-421. doi: 10.1002/mrm.26089. Epub 2016 Jan 29.
8
Fixed-Rate Compressed Floating-Point Arrays.
IEEE Trans Vis Comput Graph. 2014 Dec;20(12):2674-83. doi: 10.1109/TVCG.2014.2346458.
9
Image reconstruction: an overview for clinicians.
J Magn Reson Imaging. 2015 Mar;41(3):573-85. doi: 10.1002/jmri.24687. Epub 2014 Jun 25.
10
Distributed MRI reconstruction using Gadgetron-based cloud computing.
Magn Reson Med. 2015 Mar;73(3):1015-25. doi: 10.1002/mrm.25213. Epub 2014 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验