Suppr超能文献

无代码云计算服务,便于快速进行生物医学数字信号处理和算法开发。

Code-free cloud computing service to facilitate rapid biomedical digital signal processing and algorithm development.

机构信息

Ulster University, Belfast, UK.

Ulster University, Belfast, UK.

出版信息

Comput Methods Programs Biomed. 2021 Nov;211:106398. doi: 10.1016/j.cmpb.2021.106398. Epub 2021 Sep 4.

Abstract

BACKGROUND AND OBJECTIVE

Cloud computing has the ability to offload processing tasks to a remote computing resources. Presently, the majority of biomedical digital signal processing involves a ground-up approach by writing code in a variety of languages. This may reduce the time a researcher or health professional has to process data, while increasing the barrier to entry to those with little or no software development experience. In this study, we aim to provide a service capable of handling and processing biomedical data via a code-free interface. Furthermore, our solution should support multiple file formats and processing languages while saving user inputs for repeated use.

METHODS

A web interface via the Python-based Django framework was developed with the potential to shorten the time taken to create an algorithm, encourage code reuse, and democratise digital signal processing tasks for non-technical users using a code-free user interface. A user can upload data, create an algorithm and download the result. Using discrete functions and multi-lingual scripts (e.g. MATLAB or Python), the user can manipulate data rapidly in a repeatable manner. Multiple data file formats are supported by a decision-based file handler and user authentication-based storage allocation method.

RESULTS

The proposed system has been demonstrated as effective in handling multiple input data types in various programming languages, including Python and MATLAB. This, in turn, has the potential to reduce currently experienced bottlenecks in cross-platform development of bio-signal processing algorithms. The source code for this system has been made available to encourage reuse. A cloud service for digital signal processing has the ability to reduce the apparent complexity and abstract the need to understand the intricacies of signal processing.

CONCLUSION

We have introduced a web-based system capable of reducing the barrier to entry for inexperienced programmers. Furthermore, our system is reproducable and scalable for use in a variety of clinical or research fields.

摘要

背景与目的

云计算具有将处理任务卸载到远程计算资源的能力。目前,大多数生物医学数字信号处理都涉及到一种从零开始的方法,即用各种语言编写代码。这可能会减少研究人员或健康专业人员处理数据的时间,同时增加了对软件开发经验较少或没有经验的人的进入门槛。在这项研究中,我们旨在提供一种能够通过无代码接口处理和处理生物医学数据的服务。此外,我们的解决方案应支持多种文件格式和处理语言,同时为重复使用保存用户输入。

方法

使用基于 Python 的 Django 框架开发了一个 Web 界面,具有缩短创建算法所需时间、鼓励代码重用以及为非技术用户提供无代码用户界面的民主化数字信号处理任务的潜力。用户可以上传数据、创建算法并下载结果。使用离散函数和多语言脚本(例如 MATLAB 或 Python),用户可以以可重复的方式快速处理数据。基于决策的文件处理程序和基于用户身份验证的存储分配方法支持多种数据文件格式。

结果

该系统已被证明可有效地处理各种编程语言(包括 Python 和 MATLAB)中的多种输入数据类型。这反过来又有可能减少目前在生物信号处理算法的跨平台开发中遇到的瓶颈。该系统的源代码已提供,以鼓励重用。数字信号处理的云服务具有降低新手程序员进入门槛的能力。此外,我们的系统具有可重现性和可扩展性,可用于各种临床或研究领域。

结论

我们引入了一种基于网络的系统,能够降低无经验程序员的进入门槛。此外,我们的系统可重复使用且可扩展,可用于各种临床或研究领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验