Suppr超能文献

图像增强在口腔潜在恶性疾病辅助诊断中的应用。

Application of image enhancement in the auxiliary diagnosis of oral potentially malignant disorders.

作者信息

Wang Jiaqi, Liu Jiawang, Liu Yao, Lin Feiran, Yang Sen, Guan Xiaobing

机构信息

Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, No. 9, Fanjiacun Road, Fengtai District, Beijing, 100070, P.R. China.

出版信息

Clin Oral Investig. 2025 Apr 25;29(5):270. doi: 10.1007/s00784-025-06357-7.

Abstract

OBJECTIVES

The images of oral potentially malignant disorders (OPMDs) frequently encounter problems related to visual quality and image distortion, which may lead to serious misdiagnosis and missed diagnosis. This study is to explore the auxiliary effects of different optical image enhancement algorithms on the object detection of OPMDs lesions.

METHODS

Digital images of OPMDs were collected, including white plaques, white stripes, and erosive lesions. The dataset was divided into a training set (6,488 images) and a validation set (2,592 images). Original images were processed using multiscale retinex (MSR), adaptive histogram equalization (AHE), and adaptive contrast enhancement (ACE), respectively. Object detection models based on You Only Look Once version 8 (YOLOv8) were used for lesion detection, and the diagnostic performance was evaluated using 328 images taken at different times.

RESULTS

The model performance in the MSR-enhanced image set was superior to that in the original image set, with total accuracy increased for all three lesion types, and the sensitivity of complete correct recognition for complex multi-lesion images improved. Models trained with AHE and ACE preprocessing showed reduced diagnostic performance.

CONCLUSION

Image enhancement algorithms can enhance the visual quality of OPMDs images, and the MSR algorithm is capable of strengthening the object detection ability in the computer vision model.

CLINICAL RELEVANCE

This study provides an approach to reduce the misdiagnosis and missed diagnosis of OPMDs lesions in object detection model.

摘要

目的

口腔潜在恶性疾病(OPMDs)的图像经常遇到视觉质量和图像失真相关问题,这可能导致严重的误诊和漏诊。本研究旨在探讨不同光学图像增强算法对OPMDs病变目标检测的辅助作用。

方法

收集OPMDs的数字图像,包括白色斑块、白色条纹和糜烂性病变。数据集分为训练集(6488张图像)和验证集(2592张图像)。原始图像分别使用多尺度视网膜增强(MSR)、自适应直方图均衡化(AHE)和自适应对比度增强(ACE)进行处理。基于You Only Look Once版本8(YOLOv8)的目标检测模型用于病变检测,并使用不同时间拍摄的328张图像评估诊断性能。

结果

MSR增强图像集中的模型性能优于原始图像集,所有三种病变类型的总准确率均有所提高,复杂多病变图像完全正确识别的灵敏度也有所提高。经过AHE和ACE预处理训练的模型显示诊断性能下降。

结论

图像增强算法可以提高OPMDs图像的视觉质量,MSR算法能够增强计算机视觉模型中的目标检测能力。

临床意义

本研究提供了一种在目标检测模型中减少OPMDs病变误诊和漏诊的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验