Faculty of Dentistry, Thammasat University, Khlong Luang, Pathum Thani, Thailand.
College of Interdisciplinary Studies, Thammasat University, Khlong Luang, Pathum Thani, Thailand.
PLoS One. 2022 Aug 24;17(8):e0273508. doi: 10.1371/journal.pone.0273508. eCollection 2022.
Artificial intelligence (AI) applications in oncology have been developed rapidly with reported successes in recent years. This work aims to evaluate the performance of deep convolutional neural network (CNN) algorithms for the classification and detection of oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) in oral photographic images. A dataset comprising 980 oral photographic images was divided into 365 images of OSCC, 315 images of OPMDs and 300 images of non-pathological images. Multiclass image classification models were created by using DenseNet-169, ResNet-101, SqueezeNet and Swin-S. Multiclass object detection models were fabricated by using faster R-CNN, YOLOv5, RetinaNet and CenterNet2. The AUC of multiclass image classification of the best CNN models, DenseNet-196, was 1.00 and 0.98 on OSCC and OPMDs, respectively. The AUC of the best multiclass CNN-base object detection models, Faster R-CNN, was 0.88 and 0.64 on OSCC and OPMDs, respectively. In comparison, DenseNet-196 yielded the best multiclass image classification performance with AUC of 1.00 and 0.98 on OSCC and OPMD, respectively. These values were inline with the performance of experts and superior to those of general practictioners (GPs). In conclusion, CNN-based models have potential for the identification of OSCC and OPMDs in oral photographic images and are expected to be a diagnostic tool to assist GPs for the early detection of oral cancer.
人工智能(AI)在肿瘤学中的应用近年来发展迅速,有报道称取得了成功。本研究旨在评估深度卷积神经网络(CNN)算法在口腔摄影图像中对口腔潜在恶性疾病(OPMDs)和口腔鳞状细胞癌(OSCC)的分类和检测性能。一个包含 980 张口腔摄影图像的数据集被分为 365 张 OSCC 图像、315 张 OPMDs 图像和 300 张非病理图像。使用 DenseNet-169、ResNet-101、SqueezeNet 和 Swin-S 构建了多类图像分类模型。使用 faster R-CNN、YOLOv5、RetinaNet 和 CenterNet2 构建了多类目标检测模型。最佳 CNN 模型 DenseNet-196 的多类图像分类 AUC 在 OSCC 和 OPMDs 上分别为 1.00 和 0.98。最佳多类 CNN 基础目标检测模型 Faster R-CNN 的 AUC 在 OSCC 和 OPMDs 上分别为 0.88 和 0.64。相比之下,DenseNet-196 在 OSCC 和 OPMDs 上的多类图像分类性能最佳,AUC 分别为 1.00 和 0.98。这些值与专家的表现一致,优于全科医生(GPs)的表现。总之,基于 CNN 的模型在口腔摄影图像中对 OSCC 和 OPMDs 的识别具有潜力,有望成为一种辅助 GPs 进行早期口腔癌检测的诊断工具。