Tingare Yogesh S, Lin Wen-Zheng, Liu Lin-Yi, Su Chaochin, Teng Sheng-Hung, Chen Wei-Hong, Yen Chen-Yi, Chen Mei-Jie, Chang Ting-Hsuan, Li Wen-Ren
Institute of Organic and Polymeric Materials/Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106344, Taiwan.
Department of Chemistry, National Central University, Zhongli, 32001, Taiwan.
ChemSusChem. 2025 Jul 1;18(13):e202500266. doi: 10.1002/cssc.202500266. Epub 2025 May 19.
The interfaces of perovskite solar cells are essential for high power conversion efficiency and long-term stability. This study showcases two innovative materials, WZ40 and WZ102, triarylamine end-capped functionalized terthiophene derivatives. These materials serve as hole-transporting materials (HTMs), enabling the production of efficient mixed-halide inverted perovskite solar cells. Both HTMs exhibit impressive thermal stability with decomposition temperatures over 415 °C, making them suitable for developing stable perovskite solar cells. Their sulfur-rich terthiophene core enhances perovskite stability through Pb-S interactions, promoting uniform crystal growth. By adjusting the electron density in WZ40 and WZ102 through donor and acceptor group modifications, energy level alignment at the HTM/perovskite interface is optimized, facilitating efficient hole transfer. The donor-rich WZ102-based solar cell achieves an outstanding open-circuit voltage of 1.09 V and a power conversion efficiency of close to 20%, thanks to effective hole transport and low series resistance. This work introduces a promising class of terthiophene-based small molecules as HTMs, paving the way for dopant-free interface materials and advancing the commercialization of perovskite solar cells.
钙钛矿太阳能电池的界面对于高功率转换效率和长期稳定性至关重要。本研究展示了两种创新材料,WZ40和WZ102,即三芳基胺封端的功能化三联噻吩衍生物。这些材料用作空穴传输材料(HTM),能够生产高效的混合卤化物倒置钙钛矿太阳能电池。两种HTM均表现出令人印象深刻的热稳定性,分解温度超过415°C,使其适用于开发稳定的钙钛矿太阳能电池。它们富含硫的三联噻吩核心通过Pb-S相互作用增强了钙钛矿的稳定性,促进了均匀的晶体生长。通过供体和受体基团修饰来调节WZ40和WZ102中的电子密度,优化了HTM/钙钛矿界面处的能级排列,促进了有效的空穴转移。基于富含供体的WZ102的太阳能电池由于有效的空穴传输和低串联电阻,实现了1.09 V的出色开路电压和接近20%的功率转换效率。这项工作引入了一类有前景的基于三联噻吩的小分子作为HTM,为无掺杂界面材料铺平了道路,并推动了钙钛矿太阳能电池的商业化。