Suppr超能文献

人工智能图像分析工具可量化X连锁视网膜劈裂症视网膜畸形中的劈裂囊肿体积。

AI image analysis tools quantify schisis cystic volume in XLRS retinal dysmorphology.

作者信息

Sieving Paul A

机构信息

Center for Ocular Regenerative Therapy, UC Davis School of Medicine, Sacramento, California, USA.

出版信息

Acta Ophthalmol. 2025 Sep;103(6):725-727. doi: 10.1111/aos.17499. Epub 2025 Apr 25.

Abstract

PURPOSE

To provide a perspective on the feasibility and utility of automating image segmentation with artificial intelligence (AI)-based deep-learning algorithms to quantify retinoschisis cystic cavity volume in patients with X-linked retinoschisis (XLRS).

METHODS

Review outcomes of two studies published in this journal issue of Acta Ophthalmological on implementing AI-based analysis of Optical Coherence Tomography (OCT) retinal images to quantify structural cavities in XLRS patients. Analyse results of using AI-analytics compared with human manual segmentation for grading the same set of retinal OCT images.

RESULTS

Both papers were successful in developing independent, AI-based algorithms to automate and quantify the extent of schisis cavity spaces in the retina of XLRS patients. Both studies demonstrated that AI analytics can give results comparable to or better than human performance for quantifying XLRS structural dysmorphology. One group then simulated a clinical therapy trial comparing CAI treatment against controls; changes in AI-quantified schisis volume (ASV) proved a better metric as a trial structural endpoint than either central subfield thickness (CST) or central foveal thickness (CFT) as trial structural endpoints.

CONCLUSIONS

These two studies independently demonstrated the feasibility of automating the laborious process of quantifying retinoschisis cavity volume in XLRS patients. Further, automated AI-based cavity volume measurement was demonstrated to be feasible as a possible outcome for XLRS therapeutic trials.

摘要

目的

探讨利用基于人工智能(AI)的深度学习算法实现图像分割以量化X连锁视网膜劈裂症(XLRS)患者视网膜劈裂囊肿腔体积的可行性和实用性。

方法

回顾发表在本期《眼科学报》上的两项研究结果,这两项研究采用基于AI的光学相干断层扫描(OCT)视网膜图像分析来量化XLRS患者的结构腔。分析使用AI分析与人工手动分割对同一组视网膜OCT图像进行分级的结果。

结果

两篇论文均成功开发了独立的基于AI的算法,以自动量化XLRS患者视网膜劈裂腔空间的范围。两项研究均表明,在量化XLRS结构畸形方面,AI分析得出的结果与人类表现相当或更好。然后,一组研究模拟了一项临床治疗试验,比较CAI治疗与对照组;结果证明,作为试验结构终点,AI量化的劈裂体积(ASV)变化比中心子场厚度(CST)或中心凹厚度(CFT)作为试验结构终点更好。

结论

这两项研究独立证明了自动化量化XLRS患者视网膜劈裂腔体积这一繁琐过程的可行性。此外,基于AI的自动腔体积测量被证明作为XLRS治疗试验的可能结果是可行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验