Suppr超能文献

基于信任驱动的方法,利用机器学习增强早期森林火灾检测。

Trust-driven approach to enhance early forest fire detection using machine learning.

作者信息

Khan Tayyab, Singh Karan, Bhati Bhoopesh Singh, Ahmad Khaleel, Al-Rasheed Amal, Getahun Masresha, Soufiene Ben Othman

机构信息

Indian Institute of Information Technology Sonepat, Khewra, Haryana, India.

Jawaharlal Nehru University, New Delhi, 110067, India.

出版信息

Sci Rep. 2025 Apr 25;15(1):14480. doi: 10.1038/s41598-025-99032-6.

Abstract

Forest fires pose significant threats to both natural ecosystems and human communities due to their unpredictable nature and capacity for widespread destruction. Identifying and mitigating fires in the trunk, ground, and canopy of forests is crucial for reducing their adverse effects on the ecosystem and climate. The detrimental impacts of forest fires, such as the exacerbation of the greenhouse effect, the hastening of global warming, and the modification of climatic patterns, underscore the urgent necessity for the creation of efficient detection systems. This study presents a real-time Universal Trust Model (UTM) that is specifically designed for the early forest fires detection (FFD) using an intelligent wireless sensor network and machine learning approaches. Our method seeks to reduce fire detection time and improve the reliability of the detection process. This is achieved by employing environmental indicators and moisture levels to swiftly identify fires. The intelligent WSN functions by partitioning the forest into suitable clusters and intelligently positioning sensor nodes to guarantee extensive coverage and effective data transmission to the sink. The proposed UTM system's core component is the computation of trust ratings for every sensor node. These ratings consider communication, energy, and data trust factors to evaluate the reliability of the data being delivered. This integrated trust model enhances the robustness and accuracy of fire detection, especially under difficult environmental conditions. Furthermore, a machine learning regression model is deployed at the base station to augment the precision of fire detection. This is accomplished by examining essential attributes such as temperature, humidity, and CO concentrations. We have conducted thorough experiments using actual datasets consisting of 7200 samples to confirm the efficacy of our proposed UTM in detecting forest fires at an early stage. The results suggest that our system obtains a high rate of data processing and a reduced time delay in comparison to existing systems. This renders it a promising solution for the imperative need to promptly detect and prevent forest fires. Our technique combines trust mechanisms with machine learning algorithms to create a very advanced forest fire detection system.

摘要

森林火灾因其不可预测的性质和广泛破坏的能力,对自然生态系统和人类社区都构成了重大威胁。识别并减轻森林树干、地面和树冠层的火灾,对于减少其对生态系统和气候的不利影响至关重要。森林火灾的有害影响,如加剧温室效应、加速全球变暖以及改变气候模式,凸显了创建高效检测系统的迫切必要性。本研究提出了一种实时通用信任模型(UTM),该模型专门设计用于利用智能无线传感器网络和机器学习方法进行早期森林火灾检测(FFD)。我们的方法旨在减少火灾检测时间并提高检测过程的可靠性。这是通过采用环境指标和湿度水平来迅速识别火灾来实现的。智能无线传感器网络通过将森林划分为合适的簇并智能定位传感器节点来发挥作用,以确保广泛覆盖并有效地将数据传输到汇聚节点。所提出的UTM系统的核心组件是计算每个传感器节点的信任评级。这些评级考虑通信、能量和数据信任因素,以评估所传输数据的可靠性。这种集成信任模型增强了火灾检测的稳健性和准确性,尤其是在困难的环境条件下。此外,在基站部署了机器学习回归模型以提高火灾检测的精度。这是通过检查温度、湿度和一氧化碳浓度等关键属性来完成的。我们使用由7200个样本组成的实际数据集进行了全面实验,以确认我们提出的UTM在早期检测森林火灾方面的有效性。结果表明,与现有系统相比,我们的系统获得了较高的数据处理速率和减少的时间延迟。这使其成为满足及时检测和预防森林火灾这一迫切需求的有前景的解决方案。我们的技术将信任机制与机器学习算法相结合,创建了一个非常先进的森林火灾检测系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d68e/12032045/ba384a1428b0/41598_2025_99032_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验