Suppr超能文献

植物生长调节剂、FeO-CTs纳米颗粒和LED光对黑种草(Nigella sativa L.)愈伤组织离体生长及生化成分的影响

The effect of plant growth regulators, FeO-CTs nanoparticles and LEDs light on the growth and biochemical compounds of black seed (Nigella sativa L.) callus in vitro.

作者信息

Sobhannizadeh Ali, Giglou Mousa Torabi, Behnamian Mahdi, Estaji Asghar, Majdi Mohammad, Szumny Antoni

机构信息

Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran.

Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.

出版信息

BMC Plant Biol. 2025 Apr 25;25(1):539. doi: 10.1186/s12870-025-06423-y.

Abstract

BACKGROUND

black seed (Nigella sativa L.) has long been utilized in traditional medicine and as a food ingredient due to its potential therapeutic properties including its effectiveness against cancer, coronaviruses, and bacterial infections. Recently, it has garnered significant attention for its rich reservoir of beneficial secondary metabolites. In vitro culture of black seeds presents an efficient and modern approach for the large-scale production of these valuable compounds, offering advantages such as space efficiency, reduced time, and lower costs. This study aimed to develop and optimize a protocol for callus induction and the identification of key secondary metabolites, including thymoquinone (TQ), phenolic compounds, and flavonoids. To induce callus formation in seed explants, two plant growth regulators (PGRs) were applied individually or in combination and incorporated into Murashige and Skoog (MS) culture medium.

RESULTS

The combination of Auxin, 2,4-dichlorophenoxyacetic acid (2,4-D) and cytokinin, 6-benzylaminopurine (BAP), effectively induced callus formation in most explants, with the response varying based on concentration. The highest callus fresh weight (7.02 g) was obtained on Red(R) LED lighting with FeO-CTs nanoparticles (100 mg/L), which also resulted in the highest dry weight (1.307 g) after 40 days of cultivation. Similarly, the highest levels of phenols, flavonoids and amino acids were observed under R LED with FeO-CTs nanoparticles (100 mg L), while FeO-CTs nanoparticles at 100 and 200 mg/L) exhibited significant effects on metabolite production. In contrast, the antioxidant activity against DPPH free radicals and total carbohydrate accumulation were enhanced in callus cultures treated with FeO-CTs nanoparticles (200 mg/L) under dark conditions. Additionally, GC-MS analysis revealed that FeO-CTs nanoparticles (100 mg/L) yielded the most effective enhancement of secondary metabolites under blue (B) LED light at a concentration of 295 mg/L.

CONCLUSION

The finding of this study highlights the potential of the proposed method for the large-scale production of secondary metabolites, total carbohydrates, amino acids, phenolic compounds, and flavonoids from black seed callus cultures in a controlled environment. This optimized approach offers a cost-effective and space-efficient strategy for enhancing bioactive compound synthesis, with potential applications in pharmaceutical and nutraceutical industries.

摘要

背景

黑种草(Nigella sativa L.)长期以来一直被用于传统医学和作为食品成分,因其具有潜在的治疗特性,包括对癌症、冠状病毒和细菌感染的有效性。最近,它因其丰富的有益次生代谢产物储备而备受关注。黑种草的离体培养为大规模生产这些有价值的化合物提供了一种高效且现代的方法,具有空间效率高、时间缩短和成本降低等优势。本研究旨在开发和优化愈伤组织诱导方案以及鉴定关键次生代谢产物,包括百里醌(TQ)、酚类化合物和黄酮类化合物。为了在种子外植体中诱导愈伤组织形成,单独或组合应用了两种植物生长调节剂(PGRs),并将其添加到Murashige和Skoog(MS)培养基中。

结果

生长素2,4 - 二氯苯氧乙酸(2,4 - D)和细胞分裂素6 - 苄基腺嘌呤(BAP)的组合有效地诱导了大多数外植体的愈伤组织形成,其反应因浓度而异。在添加100 mg/L FeO - CTs纳米颗粒的红色(R)LED光照下获得了最高的愈伤组织鲜重(7.02 g),培养40天后干重也最高(1.307 g)。同样,在添加100 mg/L FeO - CTs纳米颗粒的R LED光照下观察到酚类、黄酮类和氨基酸的含量最高,而100和200 mg/L的FeO - CTs纳米颗粒对代谢产物的产生有显著影响。相比之下,在黑暗条件下用200 mg/L FeO - CTs纳米颗粒处理的愈伤组织培养物中,对DPPH自由基的抗氧化活性和总碳水化合物积累有所增强。此外,气相色谱 - 质谱分析表明,100 mg/L的FeO - CTs纳米颗粒在蓝色(B)LED光照下浓度为295 mg/L时,对次生代谢产物的增强效果最为显著。

结论

本研究结果突出了所提出的方法在可控环境下从黑种草愈伤组织培养物中大规模生产次生代谢产物、总碳水化合物、氨基酸、酚类化合物和黄酮类化合物的潜力。这种优化方法为提高生物活性化合物的合成提供了一种经济高效且节省空间的策略,在制药和营养保健品行业具有潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22db/12032791/8cd2c0986cb0/12870_2025_6423_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验