Suppr超能文献

基于注意力的深度学习与可穿戴式惯性测量单元传感器相结合的伯格平衡量表评分系统用于平衡评估

Berg Balance Scale Scoring System for Balance Evaluation by Leveraging Attention-Based Deep Learning with Wearable IMU Sensors.

作者信息

Lu Zhangli, Zhou Huiying, Lyu Honghao, Wu Haiteng, Tian Shaohua, Yang Geng

机构信息

State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.

Dongfang Electric (Hangzhou) Innovation Institute Co., Ltd., Hangzhou 310000, China.

出版信息

Bioengineering (Basel). 2025 Apr 7;12(4):395. doi: 10.3390/bioengineering12040395.

Abstract

Balance assessment is crucial for health monitoring and rehabilitation evaluation of neurological diseases like Parkinson's disease (PD) and stroke. The Berg Balance Scale (BBS) is a widely used clinical tool for balance evaluation. However, its dependence on trained therapists for subjective, time-consuming assessments limits its scalability. Current researchers have proposed several automated assessment systems. However, they suffer from difficulty in use in clinical settings and the need for feature engineering. The rapid advancement of wearable inertial measurement units (IMUs) provides an objective tool for motion analysis that is suitable for use in clinical environments. Thus, to address the limitations of manual scoring and complexities of capturing gait features, we proposed an automated BBS assessment system using an attention-based deep learning algorithm with IMU data, integrating convolutional neural networks (CNNs) for spatial feature extraction, bidirectional long short-term memory (Bi-LSTM) networks for temporal modeling, and attention mechanisms to emphasize informative features. Validated with 20 healthy subjects (young and elderly) and 20 patients (PD and stroke), the system achieved a mean absolute error (MAE) of 1.1627 and root mean squared error (RMSE) of 1.5333. Requiring only 5 min of walking data, this approach provided an efficient, objective solution for balance assessment to assist healthcare physicians as well as patients in their own health monitoring. The key limitations included: a limited generalizability to severely impaired patients who were unable to walk independently, and the inability to predict the score of individual tasks.

摘要

平衡评估对于帕金森病(PD)和中风等神经系统疾病的健康监测和康复评估至关重要。伯格平衡量表(BBS)是一种广泛用于平衡评估的临床工具。然而,其依赖训练有素的治疗师进行主观、耗时的评估限制了其可扩展性。当前研究人员已经提出了几种自动化评估系统。然而,它们在临床环境中使用存在困难,并且需要进行特征工程。可穿戴惯性测量单元(IMU)的快速发展提供了一种适用于临床环境的运动分析客观工具。因此,为了解决手动评分的局限性和捕捉步态特征的复杂性,我们提出了一种使用基于注意力的深度学习算法和IMU数据的自动化BBS评估系统,该系统集成了用于空间特征提取的卷积神经网络(CNN)、用于时间建模的双向长短期记忆(Bi-LSTM)网络以及强调信息特征的注意力机制。通过对20名健康受试者(年轻人和老年人)和20名患者(PD和中风患者)进行验证,该系统的平均绝对误差(MAE)为1.1627,均方根误差(RMSE)为1.5333。该方法仅需要5分钟的步行数据,为平衡评估提供了一种高效、客观的解决方案,以协助医疗保健医生以及患者进行自身健康监测。主要局限性包括:对无法独立行走的严重受损患者的普遍适用性有限,以及无法预测单个任务的得分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c0/12025094/2c7ba490c624/bioengineering-12-00395-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验