Suppr超能文献

基于深度学习的下肢 IMU 与节段配准和方向对准。

IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.

机构信息

Junior Research Group wearHEALTH, University of Kaiserslautern, Gottlieb-Daimler-Str. 48, 67663 Kaiserslautern, Germany.

Augmented Vision Department, DFKI, Trippstadter Str. 122, 67663 Kaiserslautern, Germany.

出版信息

Sensors (Basel). 2018 Jan 19;18(1):302. doi: 10.3390/s18010302.

Abstract

Human body motion analysis based on wearable inertial measurement units (IMUs) receives a lot of attention from both the research community and the and industrial community. This is due to the significant role in, for instance, mobile health systems, sports and human computer interaction. In sensor based activity recognition, one of the major issues for obtaining reliable results is the sensor placement/assignment on the body. For inertial motion capture (joint kinematics estimation) and analysis, the IMU-to-segment (I2S) assignment and alignment are central issues to obtain biomechanical joint angles. Existing approaches for I2S assignment usually rely on hand crafted features and shallow classification approaches (e.g., support vector machines), with no agreement regarding the most suitable features for the assignment task. Moreover, estimating the complete orientation alignment of an IMU relative to the segment it is attached to using a machine learning approach has not been shown in literature so far. This is likely due to the high amount of training data that have to be recorded to suitably represent possible IMU alignment variations. In this work, we propose online approaches for solving the assignment and alignment tasks for an arbitrary amount of IMUs with respect to a biomechanical lower body model using a deep learning architecture and windows of 128 gyroscope and accelerometer data samples. For this, we combine convolutional neural networks (CNNs) for local filter learning with long-short-term memory (LSTM) recurrent networks as well as generalized recurrent units (GRUs) for learning time dynamic features. The assignment task is casted as a classification problem, while the alignment task is casted as a regression problem. In this framework, we demonstrate the feasibility of augmenting a limited amount of real IMU training data with simulated alignment variations and IMU data for improving the recognition/estimation accuracies. With the proposed approaches and final models we achieved 98.57% average accuracy over all segments for the I2S assignment task (100% when excluding left/right switches) and an average median angle error over all segments and axes of 2 . 91 for the I2S alignment task.

摘要

基于可穿戴惯性测量单元(IMU)的人体运动分析受到研究界和工业界的广泛关注。这是因为它在移动健康系统、运动和人机交互等方面具有重要作用。在基于传感器的活动识别中,获得可靠结果的主要问题之一是传感器在身体上的放置/分配。对于惯性运动捕捉(关节运动学估计)和分析,IMU 到段(I2S)分配和对准是获得生物力学关节角度的核心问题。现有的 I2S 分配方法通常依赖于手工制作的特征和浅层分类方法(例如,支持向量机),对于分配任务最适合的特征没有达成一致意见。此外,到目前为止,文献中尚未显示使用机器学习方法来估计 IMU 相对于其附着的段的完整方向对准。这可能是由于必须记录大量的训练数据才能适当地表示可能的 IMU 对准变化。在这项工作中,我们提出了一种在线方法,用于使用深度学习架构和 128 个陀螺仪和加速度计数据样本的窗口,解决任意数量的 IMU 相对于生物力学下肢模型的分配和对准任务。为此,我们将卷积神经网络(CNN)与长短期记忆(LSTM)递归网络相结合,用于局部滤波器学习,以及广义递归单元(GRU),用于学习时间动态特征。分配任务被建模为分类问题,而对准任务被建模为回归问题。在这个框架中,我们展示了通过增加有限数量的真实 IMU 训练数据与模拟对准变化和 IMU 数据来提高识别/估计精度的可行性。使用提出的方法和最终模型,我们在 I2S 分配任务中实现了所有段的平均精度为 98.57%(排除左右开关时为 100%),在 I2S 对准任务中实现了所有段和轴的平均中值角度误差为 2.91。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9719/5795510/46da47b41363/sensors-18-00302-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验