Motezakker Ahmad Reza, Greca Luiz G, Boschi Enrico, Siqueira Gilberto, Lundell Fredrik, Rosén Tomas, Nyström Gustav, Söderberg L Daniel
Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden.
Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden.
ACS Nano. 2024 Oct 22;18(42):28636-28648. doi: 10.1021/acsnano.4c05077. Epub 2024 Oct 8.
The diffusion and interaction dynamics of charged nanoparticles (NPs) within charged polymer networks are crucial for understanding various biological and biomedical applications. Using a combination of coarse-grained molecular dynamics simulations and experimental diffusion studies, we investigate the effects of the NP size, relative surface charge density (ζ), and concentration on the NP permeation length and time. We propose a scaling law for the relative diffusion of NPs with respect to concentration and ζ, highlighting how these factors influence the NP movement within the network. The analyses reveal that concentration and ζ significantly affect NP permeation length and time, with ζ being critical, as critical as concentration. This finding is corroborated by controlled release experiments. Further, we categorize NP dynamics into sticking, sliding, and bouncing regimes, demonstrating how variations in ζ, concentration, and NP size control these behaviors. Through normalized attachment time (NAT) analyses, we elucidate the roles of electrostatic interactions, steric hindrance, and hydrodynamic forces in governing NP dynamics. These insights provide guidance for optimizing NP design in targeted drug delivery and advanced material applications, enhancing our understanding of NP behavior in complex environments.
带电纳米颗粒(NPs)在带电聚合物网络中的扩散和相互作用动力学对于理解各种生物和生物医学应用至关重要。通过结合粗粒度分子动力学模拟和实验扩散研究,我们研究了NP尺寸、相对表面电荷密度(ζ)和浓度对NP渗透长度和时间的影响。我们提出了NP相对于浓度和ζ的相对扩散的标度律,突出了这些因素如何影响NP在网络中的移动。分析表明,浓度和ζ显著影响NP渗透长度和时间,其中ζ至关重要,与浓度一样关键。这一发现得到了控释实验的证实。此外,我们将NP动力学分为黏附、滑动和弹跳模式,展示了ζ、浓度和NP尺寸的变化如何控制这些行为。通过归一化附着时间(NAT)分析,我们阐明了静电相互作用、空间位阻和流体动力在控制NP动力学中的作用。这些见解为优化靶向药物递送和先进材料应用中的NP设计提供了指导,增强了我们对NP在复杂环境中行为的理解。