Suppr超能文献

一种用于自动发情识别中小目标猪眼检测的轻量级模型。

A Lightweight Model for Small-Target Pig Eye Detection in Automated Estrus Recognition.

作者信息

Zhao Min, Duan Yongpeng, Gao Tian, Gao Xue, Hu Guangying, Cao Riliang, Liu Zhenyu

机构信息

College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.

College of Information Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.

出版信息

Animals (Basel). 2025 Apr 13;15(8):1127. doi: 10.3390/ani15081127.

Abstract

In modern large-scale pig farming, accurately identifying sow estrus and ensuring timely breeding are crucial for maximizing economic benefits. However, the short duration of estrus and the reliance on subjective human judgment pose significant challenges for precise insemination timing. To enable non-contact, automated estrus detection, this study proposes an improved algorithm, Enhanced Context-Attention YOLO (ECA-YOLO), based on YOLOv11. The model utilizes ocular appearance features-eye's spirit, color, shape, and morphology-across different estrus stages as key indicators. The MSCA module enhances small-object detection efficiency, while the PPA and GAM modules improve feature extraction capabilities. Additionally, the Adaptive Threshold Focal Loss (ATFL) function increases the model's sensitivity to hard-to-classify samples, enabling accurate estrus stage classification. The model was trained and validated on a dataset comprising 4461 images of sow eyes during estrus and was benchmarked against YOLOv5n, YOLOv7tiny, YOLOv8n, YOLOv10n, YOLOv11n, and Faster R-CNN. Experimental results demonstrate that ECA-YOLO achieves a mean average precision (mAP) of 93.2%, an F1-score of 88.0%, with 5.31M parameters, and FPS reaches 75.53 frames per second, exhibiting superior overall performance. The findings confirm the feasibility of using ocular features for estrus detection and highlight the potential of ECA-YOLO for real-time, accurate monitoring of sow estrus under complex farming conditions. This study lays the groundwork for automated estrus detection in intensive pig farming.

摘要

在现代大规模养猪业中,准确识别母猪发情并确保及时配种对于实现经济效益最大化至关重要。然而,发情期持续时间短以及依赖主观的人工判断给精确授精时间带来了重大挑战。为了实现非接触式自动发情检测,本研究基于YOLOv11提出了一种改进算法——增强上下文注意力YOLO(ECA - YOLO)。该模型利用不同发情阶段母猪眼睛的外观特征——眼神、颜色、形状和形态——作为关键指标。MSCA模块提高了小目标检测效率,而PPA和GAM模块提升了特征提取能力。此外,自适应阈值焦点损失(ATFL)函数提高了模型对难以分类样本的敏感度,能够准确进行发情阶段分类。该模型在一个包含4461张母猪发情期眼睛图像的数据集上进行了训练和验证,并与YOLOv5n、YOLOv7tiny、YOLOv8n、YOLOv10n、YOLOv11n以及Faster R - CNN进行了对比测试。实验结果表明,ECA - YOLO的平均精度均值(mAP)达到93.2%,F1分数为88.0%,参数数量为531万个,每秒帧数(FPS)达到75.53帧,整体性能表现卓越。研究结果证实了利用眼部特征进行发情检测的可行性,并突出了ECA - YOLO在复杂养殖条件下实时、准确监测母猪发情的潜力。本研究为集约化养猪中的自动发情检测奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eae/12024128/a1adab033dc5/animals-15-01127-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验