研究生教育满意度的行为分析:利用贝叶斯网络和特征重要性揭示关键影响因素

Behavioral Analysis of Postgraduate Education Satisfaction: Unveiling Key Influencing Factors with Bayesian Networks and Feature Importance.

作者信息

Li Sheng, Wang Ting, Yin Hanqing, Ding Shuai, Cai Zhiqiang

机构信息

Graduate School, Northwestern Polytechnical University, Xi'an 710072, China.

Department of Industrial Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Behav Sci (Basel). 2025 Apr 21;15(4):559. doi: 10.3390/bs15040559.

Abstract

Accurately evaluating postgraduate education satisfaction is crucial for improving higher education quality and optimizing management practices. Traditional methods often fail to capture the complex behavioral interactions among influencing factors. In this study, an innovative satisfaction indicator system framework is proposed that integrates a two-stage feature optimization method and the Tree Augmented Naive Bayes (TAN) model. The framework is designed to assess key satisfaction drivers across seven dimensions: course quality, research projects, mentor guidance, mentor's role, faculty management, academic enhancement, and quality development. Using data from 8903 valid responses, Confirmatory Factor Analysis (CFA) was conducted to validate the framework's reliability. The two-stage feature optimization method, including statistical pre-screening and XGBoost-based recursive feature selection, refined 49 features to 29 core indicators. The TAN model was used to construct a causal network, revealing the dynamic relationships between factors shaping satisfaction. The model outperformed four common machine learning algorithms, achieving an AUC value of 91.01%. The Birnbaum importance metric was employed to quantify the contribution of each feature, revealing the critical roles of academic resilience, academic aspirations, dedication and service spirit, creative ability, academic standards, and independent academic research ability. This study offers management recommendations, including enhancing academic support, mentorship, and interdisciplinary learning. Its findings provide data-driven insights for optimizing key indicators and improving postgraduate education satisfaction, contributing to behavioral sciences by linking satisfaction to outcomes and practices.

摘要

准确评估研究生教育满意度对于提高高等教育质量和优化管理实践至关重要。传统方法往往无法捕捉影响因素之间复杂的行为相互作用。在本研究中,提出了一种创新的满意度指标体系框架,该框架整合了两阶段特征优化方法和树增强朴素贝叶斯(TAN)模型。该框架旨在评估七个维度的关键满意度驱动因素:课程质量、研究项目、导师指导、导师角色、教师管理、学术提升和质量发展。利用来自8903份有效回复的数据,进行了验证性因子分析(CFA)以验证该框架的可靠性。两阶段特征优化方法,包括统计预筛选和基于XGBoost的递归特征选择,将49个特征提炼为29个核心指标。TAN模型用于构建因果网络,揭示影响满意度的因素之间的动态关系。该模型优于四种常见的机器学习算法,AUC值达到91.01%。采用Birnbaum重要性度量来量化每个特征的贡献,揭示了学术适应能力、学术抱负、奉献精神和服务精神、创新能力、学术标准和独立学术研究能力的关键作用。本研究提供了管理建议,包括加强学术支持、指导和跨学科学习。其研究结果为优化关键指标和提高研究生教育满意度提供了数据驱动的见解,通过将满意度与结果和实践联系起来,为行为科学做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1335/12024229/2368a8544c44/behavsci-15-00559-g001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索