文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Insights into the Regulatory Role of MicroRNAs in Under Moderately Low Salinity Stress.

作者信息

Shi Jianzhi, Jiang Song, Ding Yangyang, Diao Hongshan, Li Wenzhe, Li Yundong, Huang Jianhua, Yang Lishi, Yang Qibin, Zhou Falin

机构信息

Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China.

Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.

出版信息

Biology (Basel). 2025 Apr 18;14(4):440. doi: 10.3390/biology14040440.


DOI:10.3390/biology14040440
PMID:40282305
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12024918/
Abstract

MicroRNAs (miRNAs) play crucial roles in regulating various biological processes in crustaceans, including stress responses. Under acute low salinity stress conditions, miRNAs exhibit dynamic expression patterns that significantly influence the physiological and molecular responses of the shrimp. However, research on miRNAs in is very limited, and their functions under low salinity stress remain unclear. In this study, by using high-throughput sequencing technology, we identified miRNAs and investigated their regulatory mechanism in under low salinity stress. A total of 118 miRNAs were differentially expressed after low salinity exposure. These miRNAs were found to target genes involved in metabolism, pathogen infection, immune response and stress signaling pathways. By modulating the expression of these target genes, miRNAs were able to fine-tune the stress response of , thereby enhancing its tolerance to low salinity. This study provides new insights into the regulatory roles of miRNAs in the stress response of aquatic organisms and suggests potential targets for genetic improvement to enhance stress tolerance in aquaculture.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/51cbccca4078/biology-14-00440-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/ab6ed35a9293/biology-14-00440-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/f8c8359708df/biology-14-00440-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/ab18397eb768/biology-14-00440-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/a88995ea2958/biology-14-00440-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/04ff8616f4a2/biology-14-00440-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/79c27669295a/biology-14-00440-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/479d89342ff4/biology-14-00440-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/51cbccca4078/biology-14-00440-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/ab6ed35a9293/biology-14-00440-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/f8c8359708df/biology-14-00440-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/ab18397eb768/biology-14-00440-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/a88995ea2958/biology-14-00440-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/04ff8616f4a2/biology-14-00440-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/79c27669295a/biology-14-00440-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/479d89342ff4/biology-14-00440-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb10/12024918/51cbccca4078/biology-14-00440-g008.jpg

相似文献

[1]
Insights into the Regulatory Role of MicroRNAs in Under Moderately Low Salinity Stress.

Biology (Basel). 2025-4-18

[2]
Molecular cloning and characterization of acyl-CoA binding protein (ACBP) gene from shrimp Penaeus monodon exposed to salinity stress.

Dev Comp Immunol. 2013-1-23

[3]
Transcriptomic analysis of in response to acute and chronic hypotonic stress.

Front Vet Sci. 2024-8-21

[4]
Transcriptome and molecular regulatory mechanisms analysis of gills in the black tiger shrimp under chronic low-salinity stress.

Front Physiol. 2023-3-1

[5]
Identification, cloning and expression analysis of Catechol-O-methyltransferase (COMT) gene from shrimp, Penaeus monodon and its relevance to salinity stress.

Fish Shellfish Immunol. 2012-1-21

[6]
Transcriptome Analysis Reveals the Key Genes and Pathways for Growth, Ion Transport, and Oxidative Stress in Post-Larval Black Tiger Shrimp (Penaeus monodon) Under Acute Low Salt Stress.

Mar Biotechnol (NY). 2025-1-22

[7]
Multi-omics insights into antioxidant and immune responses in Penaeus monodon under ammonia-N, low salinity, and combined stress.

Ecotoxicol Environ Saf. 2025-4-15

[8]
Identification of MicroRNAs and Their Target Genes Associated with Ovarian Development in Black Tiger Shrimp (Penaeus monodon) Using High-Throughput Sequencing.

Sci Rep. 2018-8-2

[9]
Immunocompetence of Penaeus monodon under acute salinity stress and pathogenicity of Vibrio harveyi with respect to ambient salinity.

Fish Shellfish Immunol. 2020-11

[10]
Study on the mechanism of miR-7562 regulating ATG5 and ATG12 genes in Penaeus monodon under Vibrio harveyi infection.

Fish Shellfish Immunol. 2024-8

引用本文的文献

[1]
From Genes to Fisheries: A Synthesis of Current Research in Crustacean Biology and Management.

Biology (Basel). 2025-6-11

本文引用的文献

[1]
Comparative transcriptomic and molecular biology analyses to explore potential immune responses to challenge in .

Front Cell Infect Microbiol. 2024-12-20

[2]
OmicShare tools: A zero-code interactive online platform for biological data analysis and visualization.

Imeta. 2024-8-1

[3]
Differential expression of microRNAs in giant freshwater prawn (Macrobrachium rosenbergii) during the infection of Vibrio parahaemolyticus.

Fish Shellfish Immunol. 2024-10

[4]
Low salinity stress increases the risk of Vibrio parahaemolyticus infection and gut microbiota dysbiosis in Pacific white shrimp.

BMC Microbiol. 2024-7-25

[5]
Effects of myo-inositol on growth and biomarkers of environmental stress and metabolic regulation in Pacific white shrimp (Litopenaeus vannamei) reared at low salinity.

Comp Biochem Physiol Part D Genomics Proteomics. 2024-6

[6]
Transcriptome and molecular regulatory mechanisms analysis of gills in the black tiger shrimp under chronic low-salinity stress.

Front Physiol. 2023-3-1

[7]
Identification of key immune and stress related genes and pathways by comparative analysis of the gene expression profile under multiple environmental stressors in pacific white shrimp (Litopenaeus vannamei).

Fish Shellfish Immunol. 2023-4

[8]
Comparative transcriptome analysis reveals physiological responses in liver tissues of Epinephelus coioides under acute hypoxia stress.

Comp Biochem Physiol Part D Genomics Proteomics. 2022-9

[9]
Cortisol modulates glucose metabolism and oxidative response after acute high temperature stress in Pacific oyster Crassostrea gigas.

Fish Shellfish Immunol. 2022-7

[10]
Effects of Salinity on Physiological, Biochemical and Gene Expression Parameters of Black Tiger Shrimp (): Potential for Farming in Low-Salinity Environments.

Biology (Basel). 2021-11-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索