Hong Junping, Kuruoglu Ercan Engin
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
Entropy (Basel). 2025 Mar 25;27(4):340. doi: 10.3390/e27040340.
Robustness is an important issue in deep learning, and Bayesian neural networks (BNNs) provide means of robustness analysis, while the minimax method is a conservative choice in the classical Bayesian field. Recently, researchers have applied the closed-loop idea to neural networks via the minimax method and proposed the closed-loop neural networks. In this paper, we study more conservative BNNs with the minimax method, which formulates a two-player game between a deterministic neural network and a sampling stochastic neural network. From this perspective, we reveal the connection between the closed-loop neural and the BNNs. We test the models on some simple data sets and study their robustness under noise perturbation, etc.
鲁棒性是深度学习中的一个重要问题,贝叶斯神经网络(BNN)提供了鲁棒性分析的方法,而极小极大方法是经典贝叶斯领域中的一种保守选择。最近,研究人员通过极小极大方法将闭环思想应用于神经网络,并提出了闭环神经网络。在本文中,我们用极小极大方法研究更保守的BNN,该方法在确定性神经网络和采样随机神经网络之间构建了一个两人博弈。从这个角度出发,我们揭示了闭环神经网络与BNN之间的联系。我们在一些简单数据集上测试了这些模型,并研究了它们在噪声扰动等情况下的鲁棒性。