Suppr超能文献

用于高效图像传输的特征驱动语义通信

Feature-Driven Semantic Communication for Efficient Image Transmission.

作者信息

Zhang Ji, Zhang Ying, Ji Baofeng, Chen Anmin, Liu Aoxue, Xu Hengzhou

机构信息

School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471000, China.

Intelligent System Science and Technology Innovation Center, Longmen Laboratory, Luoyang 471000, China.

出版信息

Entropy (Basel). 2025 Mar 31;27(4):369. doi: 10.3390/e27040369.

Abstract

Semantic communication is an emerging approach that enhances transmission efficiency by conveying the semantic content of information more effectively. It has garnered significant attention in recent years. However, existing semantic communication systems for image transmission typically adopt direct transmission of features or uniformly compress features before transmission. They have not yet considered the differential impact of features on image recovery at the receiver end and the issue of bandwidth limitations during actual transmission. This paper shows that non-uniform processing of features leads to better image recovery under bandwidth constraints compared to uniform processing. Based on this, we propose a semantic communication system for image transmission, which introduces non-uniform quantization techniques. In the feature transmission stage, the system performs varying levels of quantization based on the differences in feature performance at the receiver, thereby reducing the bandwidth requirement. Inspired by quantitative quantization techniques, we design a non-uniform quantization algorithm capable of dynamic bit allocation. This algorithm, under bandwidth constraints, dynamically adjusts the quantization precision of features based on their contribution to the completion of tasks at the receiver end, ensuring the quality and accuracy of the transmitted data even under limited bandwidth conditions. Experimental results show that the proposed system reduces bandwidth usage while ensuring image reconstruction quality.

摘要

语义通信是一种新兴的方法,它通过更有效地传达信息的语义内容来提高传输效率。近年来,它受到了广泛关注。然而,现有的用于图像传输的语义通信系统通常采用直接传输特征或在传输前对特征进行均匀压缩。它们尚未考虑特征对接收端图像恢复的不同影响以及实际传输过程中的带宽限制问题。本文表明,与均匀处理相比,特征的非均匀处理在带宽约束下能实现更好的图像恢复。基于此,我们提出了一种用于图像传输的语义通信系统,该系统引入了非均匀量化技术。在特征传输阶段,系统根据接收端特征性能的差异进行不同程度的量化,从而降低带宽需求。受量化技术的启发,我们设计了一种能够动态分配比特的非均匀量化算法。该算法在带宽约束下,根据特征对接收端任务完成的贡献动态调整特征的量化精度,即使在带宽有限的条件下也能确保传输数据的质量和准确性。实验结果表明,所提出的系统在确保图像重建质量的同时减少了带宽使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e3a/12025675/e767c3458d5d/entropy-27-00369-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验