Liu Shaojiang, Zou Jiajun, Liu Zhendan, Dong Meixia, Wan Zhiping
Guangzhou Xinhua University, Dongguan, China.
PeerJ Comput Sci. 2025 Mar 10;11:e2731. doi: 10.7717/peerj-cs.2731. eCollection 2025.
With the widespread application of human body 3D reconstruction technology across various fields, the demands for data transmission and processing efficiency continue to rise, particularly in scenarios where network bandwidth is limited and low latency is required. This article introduces an Adversarial Feature Learning-based Semantic Communication method (AFLSC) for human body 3D reconstruction, which focuses on extracting and transmitting semantic information crucial for the 3D reconstruction task, thereby significantly optimizing data flow and alleviating bandwidth pressure. At the sender's end, we propose a multitask learning-based feature extraction method to capture the spatial layout, keypoints, posture, and depth information from 2D human images, and design a semantic encoding technique based on adversarial feature learning to encode these feature information into semantic data. We also develop a dynamic compression technique to efficiently transmit this semantic data, greatly enhancing transmission efficiency and reducing latency. At the receiver's end, we design an efficient multi-level semantic feature decoding method to convert semantic data back into key image features. Finally, an improved ViT-diffusion model is employed for 3D reconstruction, producing human body 3D mesh models. Experimental results validate the advantages of our method in terms of data transmission efficiency and reconstruction quality, demonstrating its excellent potential for application in bandwidth-limited environments.
随着人体3D重建技术在各个领域的广泛应用,对数据传输和处理效率的要求不断提高,特别是在网络带宽有限且需要低延迟的场景中。本文介绍了一种基于对抗特征学习的人体3D重建语义通信方法(AFLSC),该方法专注于提取和传输对3D重建任务至关重要的语义信息,从而显著优化数据流并减轻带宽压力。在发送端,我们提出了一种基于多任务学习的特征提取方法,以从2D人体图像中捕获空间布局、关键点、姿势和深度信息,并设计了一种基于对抗特征学习的语义编码技术,将这些特征信息编码成语义数据。我们还开发了一种动态压缩技术,以高效地传输这种语义数据,大大提高传输效率并降低延迟。在接收端,我们设计了一种高效的多级语义特征解码方法,将语义数据转换回关键图像特征。最后,采用改进的ViT-扩散模型进行3D重建,生成人体3D网格模型。实验结果验证了我们的方法在数据传输效率和重建质量方面的优势,证明了其在带宽受限环境中的出色应用潜力。