Suppr超能文献

基于线性小波的平稳遍历连续时间过程多元密度函数偏导数估计器

Linear Wavelet-Based Estimators of Partial Derivatives of Multivariate Density Function for Stationary and Ergodic Continuous Time Processes.

作者信息

Didi Sultana, Bouzebda Salim

机构信息

Department of Statistics and Operations Research, College of Sciences, Qassim University, P.O. Box 6688, Buraydah 51452, Saudi Arabia.

LMAC (Laboratory of Applied Mathematics of Compiègne), Université de Technologie de Compiègne, CS 60 319-60 203 Compiègne Cedex, 60203 Compiègne, France.

出版信息

Entropy (Basel). 2025 Apr 6;27(4):389. doi: 10.3390/e27040389.

Abstract

In this work, we propose a wavelet-based framework for estimating the derivatives of a density function in the setting of continuous, stationary, and ergodic processes. Our primary focus is the derivation of the integrated mean square error (IMSE) over compact subsets of Rd, which provides a quantitative measure of the estimation accuracy. In addition, a uniform convergence rate and normality are established. To establish the asymptotic behavior of the proposed estimators, we adopt a martingale approach that accommodates the ergodic nature of the underlying processes. Importantly, beyond ergodicity, our analysis does not require additional assumptions regarding the data. By demonstrating that the wavelet methodology remains valid under these weaker dependence conditions, we extend earlier results originally developed in the context of independent observations.

摘要

在这项工作中,我们提出了一个基于小波的框架,用于在连续、平稳和遍历过程的背景下估计密度函数的导数。我们主要关注的是在(R^d)的紧子集上积分均方误差(IMSE)的推导,它提供了估计精度的定量度量。此外,还建立了一致收敛速率和正态性。为了确定所提出估计量的渐近行为,我们采用了一种鞅方法,该方法适应了基础过程的遍历性质。重要的是,除了遍历性之外,我们的分析不需要关于数据的额外假设。通过证明小波方法在这些较弱的相依条件下仍然有效,我们扩展了最初在独立观测背景下得到的早期结果。

相似文献

2
Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes.
Rev Mat Complut. 2021;34(3):811-852. doi: 10.1007/s13163-020-00368-6. Epub 2020 Aug 17.
3
Ergodic descriptors of non-ergodic stochastic processes.
J R Soc Interface. 2022 Apr;19(189):20220095. doi: 10.1098/rsif.2022.0095. Epub 2022 Apr 13.
4
Assessment of texture stationarity using the asymptotic behavior of the empirical mean and variance.
IEEE Trans Image Process. 2008 Sep;17(9):1481-90. doi: 10.1109/TIP.2008.2001403.
5
Denoising Non-Stationary Signals via Dynamic Multivariate Complex Wavelet Thresholding.
Entropy (Basel). 2023 Nov 16;25(11):1546. doi: 10.3390/e25111546.
7
Estimation of neural firing rate: the wavelet density estimation approach.
Biomed Tech (Berl). 2013 Aug;58(4):377-86. doi: 10.1515/bmt-2013-0060.
9
Local linear estimation for spatial random processes with stochastic trend and stationary noise.
Sankhya Ser B. 2018 Nov;80(2):369-394. doi: 10.1007/s13571-018-0155-4. Epub 2018 Mar 9.
10
Stationary distribution and probability density for a stochastic SEIR-type model of coronavirus (COVID-19) with asymptomatic carriers.
Chaos Solitons Fractals. 2023 Apr;169:113256. doi: 10.1016/j.chaos.2023.113256. Epub 2023 Feb 15.

本文引用的文献

1
Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes.
Rev Mat Complut. 2021;34(3):811-852. doi: 10.1007/s13163-020-00368-6. Epub 2020 Aug 17.
2
Bias Reduction and Metric Learning for Nearest-Neighbor Estimation of Kullback-Leibler Divergence.
Neural Comput. 2018 Jul;30(7):1930-1960. doi: 10.1162/neco_a_01092. Epub 2018 Jun 14.
3
Direct Density Derivative Estimation.
Neural Comput. 2016 Jun;28(6):1101-40. doi: 10.1162/NECO_a_00835. Epub 2016 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验