Didi Sultana, Bouzebda Salim
Department of Statistics and Operations Research, College of Sciences, Qassim University, P.O. Box 6688, Buraydah 51452, Saudi Arabia.
LMAC (Laboratory of Applied Mathematics of Compiègne), Université de Technologie de Compiègne, CS 60 319-60 203 Compiègne Cedex, 60203 Compiègne, France.
Entropy (Basel). 2025 Apr 6;27(4):389. doi: 10.3390/e27040389.
In this work, we propose a wavelet-based framework for estimating the derivatives of a density function in the setting of continuous, stationary, and ergodic processes. Our primary focus is the derivation of the integrated mean square error (IMSE) over compact subsets of Rd, which provides a quantitative measure of the estimation accuracy. In addition, a uniform convergence rate and normality are established. To establish the asymptotic behavior of the proposed estimators, we adopt a martingale approach that accommodates the ergodic nature of the underlying processes. Importantly, beyond ergodicity, our analysis does not require additional assumptions regarding the data. By demonstrating that the wavelet methodology remains valid under these weaker dependence conditions, we extend earlier results originally developed in the context of independent observations.
在这项工作中,我们提出了一个基于小波的框架,用于在连续、平稳和遍历过程的背景下估计密度函数的导数。我们主要关注的是在(R^d)的紧子集上积分均方误差(IMSE)的推导,它提供了估计精度的定量度量。此外,还建立了一致收敛速率和正态性。为了确定所提出估计量的渐近行为,我们采用了一种鞅方法,该方法适应了基础过程的遍历性质。重要的是,除了遍历性之外,我们的分析不需要关于数据的额外假设。通过证明小波方法在这些较弱的相依条件下仍然有效,我们扩展了最初在独立观测背景下得到的早期结果。