Goethel Márcio Fagundes, Becker Klaus Magno, Parolini Franciele Carvalho Santos, Ervilha Ulysses Fernandes, Vilas-Boas João Paulo
Porto Biomechanics Laboratory, University of Porto, 4200-450 Porto, Portugal.
Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.
Life (Basel). 2025 Apr 10;15(4):632. doi: 10.3390/life15040632.
Falls, a major cause of injury and disability, particularly among older adults, present a significant public-health challenge. Existing methods of balance assessment often lack the sensitivity and specificity needed to identify subtle deviations from normal patterns, hindering early intervention. To address this gap, we introduced a novel artificial intelligence-based tool that leverages anomaly detection to provide a comprehensive assessment of balance performance across all age groups. This study evaluated the tool's effectiveness in 163 individuals aged 18-85 years who were assessed using a force platform under four conditions: eyes open and eyes closed on firm and foam surfaces. Data analysis, employing an artificial neural network with 19 socio-anthropometric and postural variables, showed the tool's exceptional accuracy (R = 0.99998) in differentiating among balance profiles. Notably, the model highlighted the significant impact of age and education on balance, with older adults demonstrating increased reliance on visual input, especially when somatosensory information was reduced on foam surfaces. In contrast, younger, more educated individuals exhibited a more integrated sensorimotor approach. These findings demonstrate that our anomaly-detection tool can identify subtle balance impairments often missed by traditional methods, offering valuable insights for personalized fall-risk assessment and intervention. This AI-based approach can provide a holistic assessment of balance, leading to more effective strategies for fall prevention and rehabilitation, particularly in aging populations.
跌倒,尤其是在老年人中,是导致受伤和残疾的主要原因,这对公共卫生构成了重大挑战。现有的平衡评估方法往往缺乏识别与正常模式细微偏差所需的敏感性和特异性,从而阻碍了早期干预。为了弥补这一差距,我们引入了一种基于人工智能的新型工具,该工具利用异常检测对所有年龄组的平衡表现进行全面评估。本研究评估了该工具在163名年龄在18 - 85岁之间的个体中的有效性,这些个体在四种条件下使用测力平台进行评估:在坚实表面和泡沫表面睁眼和闭眼。数据分析采用了一个包含19个社会人口统计学和姿势变量的人工神经网络,结果显示该工具在区分平衡特征方面具有极高的准确性(R = 0.99998)。值得注意的是,该模型突出了年龄和教育对平衡的重大影响,老年人表现出对视觉输入的依赖增加,尤其是当在泡沫表面体感信息减少时。相比之下,年轻且受教育程度较高的个体表现出更综合化的感觉运动方式。这些发现表明,我们的异常检测工具能够识别传统方法常常遗漏的细微平衡损伤,为个性化的跌倒风险评估和干预提供了有价值的见解。这种基于人工智能的方法可以对平衡进行全面评估,从而制定出更有效的预防跌倒和康复策略,尤其是在老年人群体中。