Suppr超能文献

基于人工智能的非侵入性胶质母细胞瘤诊断系统综述

A Review of Artificial Intelligence-Based Systems for Non-Invasive Glioblastoma Diagnosis.

作者信息

Contreras Kebin, Velez-Varela Patricia E, Casanova-Carvajal Oscar, Alvarez Angel Luis, Urbano-Bojorge Ana Lorena

机构信息

Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación FACNED, Universidad del Cauca, Popayán 190002, Colombia.

Centro de Tecnología Biomédica, Campus de Montegancedo, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

出版信息

Life (Basel). 2025 Apr 14;15(4):643. doi: 10.3390/life15040643.

Abstract

BACKGROUND

Glioblastoma multiforme (GBM) is an aggressive brain tumor with a poor prognosis. Traditional diagnosis relies on invasive biopsies, which pose surgical risks. Advances in artificial intelligence (AI) and machine learning (ML) have improved non-invasive GBM diagnosis using magnetic resonance imaging (MRI), offering potential advantages in accuracy and efficiency.

OBJECTIVE

This review aims to identify the methodologies and technologies employed in AI-based GBM diagnostics. It further evaluates the performance of AI models using standard metrics, highlighting both their strengths and limitations.

METHODOLOGY

In accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, a systematic review was conducted across major academic databases. A total of 104 articles were identified in the initial search, and 15 studies were selected for final analysis after applying inclusion and exclusion criteria.

OUTCOMES

The included studies indicated that the signal T1-weighted imaging (T1WI) is the most frequently used MRI modality in AI-based GBM diagnostics. Multimodal approaches integrating T1WI with diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) have demonstrated improved classification performance. Additionally, AI models have shown potential in surpassing conventional diagnostic methods, enabling automated tumor classification and enhancing prognostic predictions.

摘要

背景

多形性胶质母细胞瘤(GBM)是一种侵袭性脑肿瘤,预后较差。传统诊断依赖侵入性活检,存在手术风险。人工智能(AI)和机器学习(ML)的进展改善了使用磁共振成像(MRI)进行的非侵入性GBM诊断,在准确性和效率方面具有潜在优势。

目的

本综述旨在确定基于AI的GBM诊断中使用的方法和技术。它还使用标准指标评估AI模型的性能,突出其优势和局限性。

方法

根据系统评价和荟萃分析的首选报告项目(PRISMA)指南,在主要学术数据库中进行了系统评价。在初步检索中总共识别出104篇文章,应用纳入和排除标准后选择了15项研究进行最终分析。

结果

纳入的研究表明,信号T1加权成像(T1WI)是基于AI的GBM诊断中最常用的MRI模态。将T1WI与扩散加权成像(DWI)和表观扩散系数(ADC)相结合的多模态方法已显示出改善的分类性能。此外,AI模型在超越传统诊断方法方面显示出潜力,能够实现肿瘤自动分类并增强预后预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c3e/12028570/d5cc0817e1a6/life-15-00643-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验