Arefi Azam, Sreekumar Abhilash, Chronopoulos Dimitrios
Department of Mechanical Engineering & Mecha(tro)nic System Dynamics (LMSD), KU Leuven, 9000 Gent, Belgium.
Micromachines (Basel). 2025 Mar 21;16(4):359. doi: 10.3390/mi16040359.
Growing demands for self-powered, low-maintenance devices-especially in sensor networks, wearables, and the Internet of Things-have intensified interest in capturing ultra-low-frequency ambient vibrations. This paper introduces a hybrid energy harvester that combines elastic buckling with magnetically induced forces, enabling programmable transitions among monostable, bistable, and multistable regimes. By tuning three key parameters-buckling amplitude, magnet spacing, and polarity offset-the system's potential energy landscape can be selectively shaped, allowing the depth and number of potential wells to be tailored for enhanced vibrational response and broadened operating bandwidths. An energy-based modeling framework implemented via an in-house MATLAB R2024B code is presented to characterize how these parameters govern well depths, barrier heights, and snap-through transitions, while an inverse design approach demonstrates the practical feasibility of matching industrially relevant target force-displacement profiles within a constrained design space. Although the present work focuses on systematically mapping the static potential landscape, these insights form a crucial foundation for subsequent dynamic analyses and prototype validation, paving the way for advanced investigations into basins of attraction, chaotic transitions, and time-domain power output. The proposed architecture demonstrates modularity and tunability, holding promise for low-frequency energy harvesting, adaptive vibration isolation, and other nonlinear applications requiring reconfigurable mechanical stability.
对自供电、低维护设备的需求不断增长,尤其是在传感器网络、可穿戴设备和物联网领域,这激发了人们对捕获超低频环境振动的兴趣。本文介绍了一种混合能量收集器,它将弹性屈曲与磁力相结合,能够在单稳态、双稳态和多稳态之间进行可编程转换。通过调整三个关键参数——屈曲幅度、磁体间距和极性偏移——可以有选择地塑造系统的势能景观,从而可以调整势阱的深度和数量,以增强振动响应并拓宽工作带宽。本文提出了一个基于能量的建模框架,通过内部MATLAB R2024B代码实现,以表征这些参数如何控制阱深、势垒高度和快速通过转变,同时一种逆向设计方法证明了在受限设计空间内匹配工业相关目标力-位移曲线的实际可行性。尽管目前的工作重点是系统地绘制静态势能景观,但这些见解为后续的动态分析和原型验证奠定了关键基础,为深入研究吸引域、混沌转变和时域功率输出铺平了道路。所提出的架构展示了模块化和可调性,有望用于低频能量收集、自适应隔振以及其他需要可重构机械稳定性的非线性应用。