Ramamoorthy Vivek T, Özcan Ender, Parkes Andrew J, Sreekumar Abhilash, Jaouen Luc, Bécot François-Xavier
Computational Optimisation and Learning Lab, School of Computer Science, University of Nottingham, NG8 1BB, United Kingdom.
Centre for Structural Engineering and Informatics, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom.
J Acoust Soc Am. 2021 Oct;150(4):3164. doi: 10.1121/10.0006784.
When designing sound packages, often fully filling the available space with acoustic materials is not the most absorbing solution. Better solutions can be obtained by creating cavities of air pockets, but determining the most optimal shape and topology that maximises sound absorption is a computationally challenging task. Many recent topology optimisation applications in acoustics use heuristic methods such as solid-isotropic-material-with-penalisation (SIMP) to quickly find near-optimal solutions. This study investigates seven heuristic and metaheuristic optimisation approaches including SIMP applied to topology optimisation of acoustic porous materials for absorption maximisation. The approaches tested are hill climbing, constructive heuristics, SIMP, genetic algorithm, tabu search, covariance-matrix-adaptation evolution strategy (CMA-ES), and differential evolution. All the algorithms are tested on seven benchmark problems varying in material properties, target frequencies, and dimensions. The empirical results show that hill climbing, constructive heuristics, and a discrete variant of CMA-ES outperform the other algorithms in terms of the average quality of solutions over the different problem instances. Though gradient-based SIMP algorithms converge to local optima in some problem instances, they are computationally more efficient. One of the general lessons is that different strategies explore different regions of the search space producing unique sets of solutions.
在设计隔音包时,通常用声学材料完全填满可用空间并非最有效的吸音解决方案。通过创建气腔可以获得更好的解决方案,但确定能使吸音最大化的最优形状和拓扑结构是一项计算难题。声学领域最近的许多拓扑优化应用都使用启发式方法,如实心各向同性材料惩罚法(SIMP)来快速找到接近最优的解决方案。本研究调查了七种启发式和元启发式优化方法,包括应用于声学多孔材料拓扑优化以实现吸音最大化的SIMP。所测试的方法有爬山法、构造性启发式方法、SIMP、遗传算法、禁忌搜索、协方差矩阵自适应进化策略(CMA-ES)和差分进化。所有算法都在七个基准问题上进行了测试,这些问题在材料特性、目标频率和尺寸方面各不相同。实证结果表明,在不同问题实例的平均解质量方面,爬山法、构造性启发式方法和CMA-ES的离散变体优于其他算法。虽然基于梯度的SIMP算法在某些问题实例中会收敛到局部最优解,但它们在计算上更高效。一个普遍的教训是,不同策略探索搜索空间的不同区域,从而产生独特的解集。