Chang En-Chih, Sun Yeong-Jeu, Cheng Chun-An
Department of Electrical Engineering, I-Shou University, No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City 84001, Taiwan.
Micromachines (Basel). 2025 Mar 26;16(4):377. doi: 10.3390/mi16040377.
A new and improved sliding mode control (NISMC) with a grey linear regression model (GLRM) facilitates the development of high-quality pure sine wave inverters in photovoltaic (PV) energy conversion systems. SMCs are resistant to variations in internal parameters and external load disturbances, resulting in their popularity in PV power generation. However, SMCs experience a slow convergence time for system states, and they may cause chattering. These limitations can result in subpar transient and steady-state performance of the PV system. Furthermore, partial shading frequently yields a multi-peaked power-voltage curve for solar panels that diminishes power generation. A traditional maximum power point tracking (MPPT) algorithm in such a case misclassifies and fail to locate the global extremes. This paper suggests a GLRM-based NISMC for performing MPPT and generating a high-quality sine wave to overcome the above issues. The NISMC ensures a faster finite system state convergence along with reduced chattering and steady-state errors. The GLRM represents an enhancement of the standard grey model, enabling greater accuracy in predicting global state points. Simulations and experiments validate that the proposed strategy gives better tracking performance of the inverter output voltage during both steady state and transient tests. Under abrupt load changing, the proposed inverter voltage sag is constrained to 10% to 90% of the nominal value and the voltage swell is limited within 10% of the nominal value, complying with the IEEE (Institute of Electrical and Electronics Engineers) 1159-2019 standard. Under rectified loading, the proposed inverter satisfies the IEEE 519-2014 standard to limit the voltage total harmonic distortion (THD) to below 8%.
一种结合灰色线性回归模型(GLRM)的新型改进滑模控制(NISMC),有助于在光伏(PV)能量转换系统中开发高质量的纯正弦波逆变器。滑模控制对内部参数变化和外部负载干扰具有抗性,因此在光伏发电中很受欢迎。然而,滑模控制的系统状态收敛时间较慢,并且可能会引起抖振。这些限制可能导致光伏系统的暂态和稳态性能不佳。此外,部分阴影经常会使太阳能电池板的功率 - 电压曲线出现多个峰值,从而降低发电量。在这种情况下,传统的最大功率点跟踪(MPPT)算法会出现误判,无法定位全局极值。本文提出一种基于GLRM的NISMC,用于执行MPPT并生成高质量的正弦波,以克服上述问题。NISMC确保更快的有限系统状态收敛,同时减少抖振和稳态误差。GLRM是对标准灰色模型的一种改进,能够在预测全局状态点时具有更高的准确性。仿真和实验验证了所提出的策略在稳态和暂态测试期间对逆变器输出电压具有更好的跟踪性能。在负载突然变化时,所提出的逆变器电压跌落被限制在标称值的10%至90%之间,电压上升被限制在标称值的10%以内,符合IEEE(电气和电子工程师协会)1159 - 2019标准。在整流负载下,所提出的逆变器满足IEEE 519 - 2014标准,将电压总谐波失真(THD)限制在8%以下。