Datta Debottam, Eskandari Ali, Syed Junaid, Rai Himanshu, Gosvami Nitya Nand, Tsui Ting Y
Department of Materials Science & Engineering, Indian Institute of Technology Delhi Hauz Khas, New Delhi 110016, India.
Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
Micromachines (Basel). 2025 Apr 2;16(4):427. doi: 10.3390/mi16040427.
Tantalum metal and tantalum oxide thin films are commonly used in semiconductor devices, protective coatings, and biomedical implants. However, there is limited information on their nanotribological behavior and small-scale mechanical properties. This study characterized the chemical, mechanical, and tribological properties of as-deposited and 400 °C annealed β-Ta thin films using nanoindentation and atomic force microscope (AFM)-based nanoscale friction and wear tests. X-ray photoelectron spectroscopy (XPS) results revealed that a thermally grown Ta oxide layer forms on the surface of Ta film after being annealed at 400 °C. The nanoindentation data indicated an increase in both the hardness and elastic modulus in the heat-treated sample compared to the as-deposited Ta film (13.1 ± 1.3 GPa vs. 12.0 ± 1.4 GPa for hardness) and (213.1 ± 12.7 GPa vs. 175.2 ± 12.3 GPa for elastic modulus). Our nanotribological results show that the friction increased and wear resistance decreased on the surface of the annealed sample compared to the as-deposited Ta film. This discrepancy may be caused by the oxidation of Ta on the film surface, which induces residual compressive stresses in the film and degrades its wear resistance. Our results highlight the influence of thermal annealing and oxidation on nanotribological behavior and small-scale mechanical properties of Ta thin films.
钽金属和氧化钽薄膜常用于半导体器件、防护涂层及生物医学植入物中。然而,关于它们的纳米摩擦学行为和小尺度力学性能的信息有限。本研究使用纳米压痕以及基于原子力显微镜(AFM)的纳米尺度摩擦与磨损测试,对沉积态和400℃退火的β-Ta薄膜的化学、力学和摩擦学性能进行了表征。X射线光电子能谱(XPS)结果表明,在400℃退火后,Ta薄膜表面形成了一层热生长的Ta氧化物层。纳米压痕数据显示,与沉积态Ta薄膜相比,热处理样品的硬度和弹性模量均有所增加(硬度:13.1±1.3 GPa对12.0±1.4 GPa)以及(弹性模量:213.1±12.7 GPa对175.2±12.3 GPa)。我们的纳米摩擦学结果表明,与沉积态Ta薄膜相比,退火样品表面的摩擦力增加而耐磨性降低。这种差异可能是由薄膜表面Ta的氧化引起的,这会在薄膜中产生残余压应力并降低其耐磨性。我们的结果突出了热退火和氧化对Ta薄膜纳米摩擦学行为和小尺度力学性能的影响。