文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Electrical Phenotyping of Aged Human Mesenchymal Stem Cells Using Dielectrophoresis.

作者信息

Simpkins Lexi L C, Tsai Tunglin, Egun Emmanuel, Adams Tayloria N G

机构信息

Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA.

Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA.

出版信息

Micromachines (Basel). 2025 Apr 3;16(4):435. doi: 10.3390/mi16040435.


DOI:10.3390/mi16040435
PMID:40283310
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12029641/
Abstract

Human mesenchymal stem cells (hMSCs) are widely used in regenerative medicine, but large-scale in vitro expansion alters their function, impacting proliferation and differentiation potential. Currently, a predictive marker to assess these changes is lacking. Here, we used dielectrophoresis (DEP) to characterize the electrical phenotype of hMSCs derived from bone marrow (BM), adipose tissue (AT), and umbilical cord (UC) as they aged in vitro from passage 4 (P4) to passage 9 (P9). The electrical phenotype was defined by the DEP spectra, membrane capacitance, and cytoplasm conductivity. Cell morphology and size, growth characteristics, adipogenic differentiation potential, and osteogenic differentiation potential were assessed alongside label-free biomarker membrane capacitance and cytoplasm conductivity. Differentiation was confirmed by histological staining and RT-qPCR. All hMSCs exhibited typical morphology, though cell size varied, with UC-hMSCs displaying the largest variability across all size metrics. Growth analysis revealed that UC-hMSCs proliferated the fastest. The electrical phenotype varied with cell source and in vitro age, with high passage hMSCs showing noticeable shifts in DEP spectra, membrane capacitance, and cytoplasm conductivity. Correlation analysis revealed that population doubling level (PDL) correlated with membrane capacitance and cytoplasm conductivity, indicating PDL as a more precise marker of in vitro aging than passage number. Additionally, we demonstrate that membrane capacitance correlates with the osteogenic marker COL1A1 and that cytoplasm conductivity correlates with the adipogenic markers ADIPOQ and FABP4, suggesting that DEP-derived electrical properties serve as label-free biomarkers of differentiation potential. While DEP has previously been applied to BM-hMSCs and AT-hMSCs, and more recently to UC-hMSCs, few studies have provided a direct comparison across all three sources or tracked changes across continuous expansion. These findings underscore the utility of DEP as a label-free approach for assessing hMSC aging and function, offering practical applications for optimizing stem cell expansion and stem cell banking in clinical settings.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/e4818e1d1a94/micromachines-16-00435-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/56a9809494fe/micromachines-16-00435-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/9f6b4caf1ea6/micromachines-16-00435-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/a24b3ad76df7/micromachines-16-00435-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/3e43a5ef722e/micromachines-16-00435-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/a170d0d70b4d/micromachines-16-00435-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/05fcda3affda/micromachines-16-00435-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/e4818e1d1a94/micromachines-16-00435-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/56a9809494fe/micromachines-16-00435-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/9f6b4caf1ea6/micromachines-16-00435-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/a24b3ad76df7/micromachines-16-00435-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/3e43a5ef722e/micromachines-16-00435-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/a170d0d70b4d/micromachines-16-00435-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/05fcda3affda/micromachines-16-00435-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3194/12029641/e4818e1d1a94/micromachines-16-00435-g007.jpg

相似文献

[1]
Electrical Phenotyping of Aged Human Mesenchymal Stem Cells Using Dielectrophoresis.

Micromachines (Basel). 2025-4-3

[2]
Electrical signature of heterogeneous human mesenchymal stem cells.

Electrophoresis. 2024-9

[3]
Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction.

Stem Cell Res Ther. 2017-4-27

[4]
Large-Scale Automated Hollow-Fiber Bioreactor Expansion of Umbilical Cord-Derived Human Mesenchymal Stromal Cells for Neurological Disorders.

Neurochem Res. 2019-12-11

[5]
Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells.

Ann Hematol. 2012-3-8

[6]
Characterizing the dielectric properties of human mesenchymal stem cells and the effects of charged elastin-like polypeptide copolymer treatment.

Biomicrofluidics. 2014-9-16

[7]
Culture Expansion Shifts the Immune Phenotype of Human Adipose-Derived Mesenchymal Stem Cells.

Front Immunol. 2021

[8]
Andrographolide promotes proliferative and osteogenic potentials of human placenta-derived mesenchymal stem cells through the activation of Wnt/β-catenin signaling.

Stem Cell Res Ther. 2021-4-14

[9]
Decreased CRISPLD2 expression impairs osteogenic differentiation of human mesenchymal stem cells during in vitro expansion.

J Cell Physiol. 2023-6

[10]
Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential.

Stem Cell Res Ther. 2014-2-21

本文引用的文献

[1]
The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review.

Front Cell Dev Biol. 2024-7-26

[2]
Electrical signature of heterogeneous human mesenchymal stem cells.

Electrophoresis. 2024-9

[3]
MSCs mediate long-term efficacy in a Crohn's disease model by sustained anti-inflammatory macrophage programming via efferocytosis.

NPJ Regen Med. 2024-1-20

[4]
Morphology-based deep learning enables accurate detection of senescence in mesenchymal stem cell cultures.

BMC Biol. 2024-1-2

[5]
Cellular expansion of MSCs: Shifting the regenerative potential.

Aging Cell. 2023-1

[6]
Senescence State in Mesenchymal Stem Cells at Low Passages: Implications in Clinical Use.

Front Cell Dev Biol. 2022-4-4

[7]
Mesenchymal Stromal Cells for the Treatment of Graft Versus Host Disease.

Front Immunol. 2021

[8]
Cell heterogeneity, rather than the cell storage solution, affects the behavior of mesenchymal stem cells in vitro and in vivo.

Stem Cell Res Ther. 2021-7-13

[9]
Culture Expansion Shifts the Immune Phenotype of Human Adipose-Derived Mesenchymal Stem Cells.

Front Immunol. 2021

[10]
Dielectrophoretic Characterization of Tenogenically Differentiating Mesenchymal Stem Cells.

Biosensors (Basel). 2021-2-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索