Del Prado Santamaría Rodrigo, Dhimish Mahmoud, Dos Reis Benatto Gisele Alves, Kari Thøger, Poulsen Peter B, Spataru Sergiu V
Department of Electrical and Photonics Engineering, Technical University of Denmark, 4000 Roskilde, Sjælland, Denmark.
Micromachines (Basel). 2025 Apr 4;16(4):437. doi: 10.3390/mi16040437.
This review paper presents a comprehensive analysis of electroluminescence (EL) imaging techniques for photovoltaic (PV) module diagnostics, focusing on advancements from conventional indoor imaging to outdoor and daylight EL imaging. It examines key challenges, including ambient light interference and environmental variability, and highlights innovations such as infrared-sensitive indium gallium arsenide (InGaAs) cameras, optical filtering, and periodic current modulation to enhance defect detection. The review also explores the role of artificial intelligence (AI)-driven methodologies, including deep learning and generative adversarial networks (GANs), in automating defect classification and performance assessment. Additionally, the emergence of drone-based EL imaging has facilitated large-scale PV inspections with improved efficiency. By synthesizing recent advancements, this paper underscores the critical role of EL imaging in ensuring PV module reliability, optimizing performance, and supporting the long-term sustainability of solar energy systems.
这篇综述文章对用于光伏(PV)组件诊断的电致发光(EL)成像技术进行了全面分析,重点关注从传统室内成像到室外和日光EL成像的进展。文章研究了关键挑战,包括环境光干扰和环境变化,并突出了诸如红外敏感铟镓砷(InGaAs)相机、光学滤波和周期性电流调制等创新技术,以增强缺陷检测。该综述还探讨了人工智能(AI)驱动的方法,包括深度学习和生成对抗网络(GANs)在自动化缺陷分类和性能评估中的作用。此外,基于无人机的EL成像的出现提高了大规模光伏检查的效率。通过综合近期进展,本文强调了EL成像在确保光伏组件可靠性、优化性能以及支持太阳能系统长期可持续性方面的关键作用。