文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

孟鲁司特及其结构衍生物与多巴胺能和5-羟色胺能受体结合亲和力的计算研究:综合分子模拟的见解

Computational Investigation of Montelukast and Its Structural Derivatives for Binding Affinity to Dopaminergic and Serotonergic Receptors: Insights from a Comprehensive Molecular Simulation.

作者信息

Alotaiq Nasser, Dermawan Doni

机构信息

Health Sciences Research Center (HSRC), Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia.

Department of Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-661 Warsaw, Poland.

出版信息

Pharmaceuticals (Basel). 2025 Apr 10;18(4):559. doi: 10.3390/ph18040559.


DOI:10.3390/ph18040559
PMID:40283994
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12030116/
Abstract

: Montelukast (MLK), a leukotriene receptor antagonist, has been associated with neuropsychiatric side effects. This study aimed to rationally modify MLK's structure to reduce these risks by optimizing its interactions with dopamine D2 (DRD2) and serotonin 5-HT1A receptors using computational molecular simulation techniques. : A library of MLK derivatives was designed and screened using structural similarity analysis, molecular docking, molecular dynamics (MD) simulations, MM/PBSA binding free energy calculations, and ADME-Tox predictions. Structural similarity analysis, based on Tanimoto coefficient fingerprinting, compared MLK derivatives to known neuropsychiatric drugs. Docking was performed to assess initial receptor binding, followed by 100 ns MD simulations to evaluate binding stability. MM/PBSA calculations quantified binding affinities, while ADME-Tox profiling predicted pharmacokinetic and toxicity risks. : Several MLK derivatives showed enhanced DRD2 and 5-HT1A binding. MLK_MOD-42 and MLK_MOD-43 emerged as the most promising candidates, exhibiting MM/PBSA binding free energies of -31.92 ± 2.54 kcal/mol and -27.37 ± 2.22 kcal/mol for DRD2 and -30.22 ± 2.29 kcal/mol and -28.19 ± 2.14 kcal/mol for 5-HT1A, respectively. Structural similarity analysis confirmed that these derivatives share key pharmacophoric features with atypical antipsychotics and anxiolytics. However, off-target interactions were not assessed, which may influence their overall safety profile. ADME-Tox analysis predicted improved oral bioavailability and lower neurotoxicity risks. : MLK_MOD-42 and MLK_MOD-43 exhibit optimized receptor interactions and enhanced pharmacokinetics, suggesting potential neuropsychiatric applications. However, their safety and efficacy remain to be validated through in vitro and in vivo studies. Until such validation is performed, these derivatives should be considered as promising candidates with optimized receptor binding rather than confirmed safer alternatives.

摘要

孟鲁司特(MLK)是一种白三烯受体拮抗剂,与神经精神方面的副作用有关。本研究旨在通过使用计算分子模拟技术优化其与多巴胺D2(DRD2)和5-羟色胺5-HT1A受体的相互作用,合理修饰MLK的结构以降低这些风险。 设计了一个MLK衍生物文库,并使用结构相似性分析、分子对接、分子动力学(MD)模拟、MM/PBSA结合自由能计算和ADME-Tox预测进行筛选。基于Tanimoto系数指纹图谱的结构相似性分析,将MLK衍生物与已知的神经精神药物进行比较。进行对接以评估初始受体结合情况,随后进行100纳秒的MD模拟以评估结合稳定性。MM/PBSA计算量化了结合亲和力,而ADME-Tox分析预测了药代动力学和毒性风险。 几种MLK衍生物显示出增强的DRD2和5-HT1A结合。MLK_MOD-42和MLK_MOD-43成为最有前景的候选物,其与DRD2的MM/PBSA结合自由能分别为-31.92±2.54千卡/摩尔和-27.37±2.22千卡/摩尔,与5-HT1A的结合自由能分别为-30.22±2.29千卡/摩尔和-28.19±2.14千卡/摩尔。结构相似性分析证实,这些衍生物与非典型抗精神病药和抗焦虑药具有共同的关键药效基团特征。然而,未评估脱靶相互作用,这可能会影响它们的整体安全性。ADME-Tox分析预测口服生物利用度提高,神经毒性风险降低。 MLK_MOD-42和MLK_MOD-43表现出优化的受体相互作用和增强的药代动力学,表明具有潜在的神经精神方面的应用前景。然而,它们的安全性和有效性仍有待通过体外和体内研究进行验证。在进行此类验证之前,这些衍生物应被视为具有优化受体结合的有前景的候选物,而非已证实的更安全的替代品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/4551ef68a27a/pharmaceuticals-18-00559-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/34fcf045b217/pharmaceuticals-18-00559-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/94d3c60af1a8/pharmaceuticals-18-00559-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/38b1ccb5cb4a/pharmaceuticals-18-00559-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/aad0f9aa1708/pharmaceuticals-18-00559-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/bff96b9d1d4c/pharmaceuticals-18-00559-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/dacc90291fbe/pharmaceuticals-18-00559-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/f8214d27c642/pharmaceuticals-18-00559-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/eb587a749c3e/pharmaceuticals-18-00559-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/421508362dbb/pharmaceuticals-18-00559-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/4551ef68a27a/pharmaceuticals-18-00559-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/34fcf045b217/pharmaceuticals-18-00559-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/94d3c60af1a8/pharmaceuticals-18-00559-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/38b1ccb5cb4a/pharmaceuticals-18-00559-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/aad0f9aa1708/pharmaceuticals-18-00559-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/bff96b9d1d4c/pharmaceuticals-18-00559-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/dacc90291fbe/pharmaceuticals-18-00559-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/f8214d27c642/pharmaceuticals-18-00559-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/eb587a749c3e/pharmaceuticals-18-00559-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/421508362dbb/pharmaceuticals-18-00559-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8997/12030116/4551ef68a27a/pharmaceuticals-18-00559-g010.jpg

相似文献

[1]
Computational Investigation of Montelukast and Its Structural Derivatives for Binding Affinity to Dopaminergic and Serotonergic Receptors: Insights from a Comprehensive Molecular Simulation.

Pharmaceuticals (Basel). 2025-4-10

[2]
Computational Screening of IL-1 and IL-6 Inhibitors for Rheumatoid Arthritis: Insights from Molecular Docking and Dynamics Analysis.

Curr Pharm Des. 2025-3-20

[3]
Exploring Radioiodinated Anastrozole and Epirubicin as AKT1-Targeted Radiopharmaceuticals in Breast Cancer: In Silico Analysis and Potential Therapeutic Effect with Functional Nuclear Imagining Implications.

Molecules. 2024-9-4

[4]
Structural modelling and pharmacology of β-carboline alkaloids as potent 5-HT1A receptor antagonists and reuptake inhibitors.

J Biomol Struct Dyn. 2023

[5]
Designing novel potent oxindole derivatives as VEGFR2 inhibitors for cancer therapy: Computational insights from molecular docking, drug-likeness, DFT, and structural dynamics studies.

J Mol Graph Model. 2025-7

[6]
Unveiling Pharmacological Mechanisms of (Abresham), a Traditional Arabic Unani Medicine for Ischemic Heart Disease: An Integrative Molecular Simulation Study.

Pharmaceutics. 2025-2-24

[7]
Some Flavolignans as Potent Sars-Cov-2 Inhibitors Molecular Docking, Molecular Dynamic Simulations and ADME Analysis.

Curr Comput Aided Drug Des. 2022

[8]
Discovery of New Dual-Target Agents Against PPAR-γ and α-Glucosidase Enzymes with Molecular Modeling Methods: Molecular Docking, Molecular Dynamic Simulations, and MM/PBSA Analysis.

Protein J. 2024-6

[9]
Harnessing allosteric inhibition: prioritizing LIMK2 inhibitors for targeted cancer therapy through pharmacophore-based virtual screening and essential molecular dynamics.

J Biomol Struct Dyn. 2025-2

[10]
An Exploration of the Inhibitory Mechanism of Rationally Screened Benzofuran-1,3,4-Oxadiazoles and-1,2,4-Triazoles as Inhibitors of NS5B RdRp Hepatitis C Virus through Pharmacoinformatic Approaches.

Biomedicines. 2023-11-17

引用本文的文献

[1]
From Lab to Clinic: How Artificial Intelligence (AI) Is Reshaping Drug Discovery Timelines and Industry Outcomes.

Pharmaceuticals (Basel). 2025-6-30

本文引用的文献

[1]
Unveiling Pharmacological Mechanisms of (Abresham), a Traditional Arabic Unani Medicine for Ischemic Heart Disease: An Integrative Molecular Simulation Study.

Pharmaceutics. 2025-2-24

[2]
Advancing Cancer Therapy with Quantum Dots and Other Nanostructures: A Review of Drug Delivery Innovations, Applications, and Challenges.

Cancers (Basel). 2025-3-4

[3]
Evaluation of Structure Prediction and Molecular Docking Tools for Therapeutic Peptides in Clinical Use and Trials Targeting Coronary Artery Disease.

Int J Mol Sci. 2025-1-8

[4]
Montelukast Use and the Risk of Neuropsychiatric Adverse Events in Children.

JAMA Pediatr. 2025-4-1

[5]
Introduction to Artificial Intelligence and Machine Learning in Pathology and Medicine: Generative and Nongenerative Artificial Intelligence Basics.

Mod Pathol. 2025-4

[6]
Leveraging Therapeutic Proteins and Peptides from Earthworms: Targeting SOCS2 E3 Ligase for Cardiovascular Therapy through Molecular Dynamics Simulations.

Int J Mol Sci. 2024-10-8

[7]
Risk of neuropsychiatric adverse events associated with montelukast use in children and adolescents: a population-based case-crossover study.

BMJ Paediatr Open. 2024-9-9

[8]
Seven-membered N-heterocycles as approved drugs and promising leads in medicinal chemistry as well as the metal-free domino access to their scaffolds.

Eur J Med Chem. 2024-9-5

[9]
In silico assessment of biocompatibility and toxicity: molecular docking and dynamics simulation of PMMA-based dental materials for interim prosthetic restorations.

J Mater Sci Mater Med. 2024-6-4

[10]
Dental biomaterials redefined: molecular docking and dynamics-driven dental resin composite optimization.

BMC Oral Health. 2024-5-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索