Suppr超能文献

利用蒙特卡罗马尔可夫链技术结合DSSAT模型与遥感数据进行水稻生长估算和产量预测

Rice Growth Estimation and Yield Prediction by Combining the DSSAT Model and Remote Sensing Data Using the Monte Carlo Markov Chain Technique.

作者信息

Chen Yingbo, Wang Siyu, Xue Zhankui, Hu Jijie, Chen Shaojie, Lv Zunfu

机构信息

Zhejiang A&F University, Lin'an, Hangzhou 311300, China.

Jinhua Agricultural Technology Promotion and Seed Management Center, Jinhua 321000, China.

出版信息

Plants (Basel). 2025 Apr 14;14(8):1206. doi: 10.3390/plants14081206.

Abstract

The integration of crop models and remote sensing data has become a useful method for monitoring crop growth status and crop yield based on data assimilation. The objective of this study was to use leaf area index (LAI) values and plant nitrogen accumulation (PNA) values generated from spectral indices to calibrate the Decision Support System for Agrotechnology Transfer (DSSAT) model using the Monte Carlo Markov Chain (MCMC) technique. The initial management parameters, including sowing date, sowing rate, and nitrogen rate, are recalibrated based on the relationship between the remote sensing state variables and the simulated state variables. This integrated technique was tested on independent datasets acquired from three rice field tests at the experimental site in Deqing, China. The results showed that the data assimilation method achieved the most accurate LAI (R = 0.939 and RMSE = 0.74) and PNA (R = 0.926 and RMSE = 7.3 kg/ha) estimations compared with the spectral index method. Average differences (RE, %) between the inverted initialized parameters and the original input parameters for sowing date, seeding rate, and nitrogen amount were 1.33%, 4.75%, and 8.16%, respectively. The estimated yield was in good agreement with the measured yield (R = 0.79 and RMSE = 661 kg/ha). The average root mean square deviation (RMSD) for the simulated values of yield was 745 kg/ha. Yield uncertainty from data assimilation between crop models and remote sensing was quantified. This study found that data assimilation of crop models and remote sensing data using the MCMC technique could improve the estimation of rice leaf area index (LAI), plant nitrogen accumulation (PNA), and yield. Data assimilation using the MCMC technique improves the prediction of LAI, PNA, and yield by solving the saturation effect of the normalized difference vegetation index (NDVI). This method proposed in this study can provide precise decision-making support for field management and anticipate regional yield fluctuations in advance.

摘要

基于数据同化的作物模型与遥感数据整合已成为监测作物生长状况和作物产量的一种有效方法。本研究的目的是利用光谱指数生成的叶面积指数(LAI)值和植株氮素积累(PNA)值,采用蒙特卡洛马尔可夫链(MCMC)技术校准农业技术转移决策支持系统(DSSAT)模型。基于遥感状态变量与模拟状态变量之间的关系,对包括播种日期、播种量和施氮量在内的初始管理参数进行重新校准。该集成技术在中国德清试验场的三个稻田试验获取的独立数据集上进行了测试。结果表明,与光谱指数法相比,数据同化方法在LAI(R = 0.939,RMSE = 0.74)和PNA(R = 0.926,RMSE = 7.3 kg/ha)估计方面最为准确。播种日期、播种量和施氮量反演的初始参数与原始输入参数之间的平均差异(RE,%)分别为1.33%、4.75%和8.16%。估计产量与实测产量吻合良好(R = 0.79,RMSE = 661 kg/ha)。产量模拟值的平均均方根偏差(RMSD)为745 kg/ha。对作物模型与遥感之间数据同化产生的产量不确定性进行了量化。本研究发现,利用MCMC技术对作物模型与遥感数据进行数据同化可提高水稻叶面积指数(LAI)、植株氮素积累(PNA)及产量的估计。利用MCMC技术进行数据同化通过解决归一化植被指数(NDVI)的饱和效应,改善了LAI、PNA和产量的预测。本研究提出的方法可为田间管理提供精确的决策支持,并提前预测区域产量波动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b87e/12030421/961e4235288c/plants-14-01206-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验