Suppr超能文献

基于遥感数据同化到 SAFY 作物生长模型的小麦生长监测和产量估算。

Wheat growth monitoring and yield estimation based on remote sensing data assimilation into the SAFY crop growth model.

机构信息

School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, Henan, China.

Zhangzhou Institute of Surverying and Mapping, Zhangzhou, 363000, Fujian, China.

出版信息

Sci Rep. 2022 Mar 31;12(1):5473. doi: 10.1038/s41598-022-09535-9.

Abstract

Crop growth monitoring and yield estimate information can be obtained via appropriate metrics such as the leaf area index (LAI) and biomass. Such information is crucial for guiding agricultural production, ensuring food security, and maintaining sustainable agricultural development. Traditional methods of field measurement and monitoring typically have low efficiency and can only give limited untimely information. Alternatively, methods based on remote sensing technologies are fast, objective, and nondestructive. Indeed, remote sensing data assimilation and crop growth modeling represent an important trend in crop growth monitoring and yield estimation. In this study, we assimilate the leaf area index retrieved from Sentinel-2 remote sensing data for crop growth model of the simple algorithm for yield estimation (SAFY) in wheat. The SP-UCI optimization algorithm is used for fine-tuning for several SAFY parameters, namely the emergence date (D), the effective light energy utilization rate (ELUE), and the senescence temperature threshold (STT) which is indicative of biological aging. These three sensitive parameters are set in order to attain the global minimum of an error function between the SAFY model predicted values and the LAI inversion values. This assimilation of remote sensing data into the crop growth model facilitates the LAI, biomass, and yield estimation. The estimation results were validated using data collected from 48 experimental plots during 2014 and 2015. For the 2014 data, the results showed coefficients of determination (R) of the LAI, biomass and yield of 0.73, 0.83 and 0.49, respectively, with corresponding root-mean-squared error (RMSE) values of 0.72, 1.13 t/ha and 1.14 t/ha, respectively. For the 2015 data, the estimated R values of the LAI, biomass, and yield were 0.700, 0.85, and 0.61, respectively, with respective RMSE values of 0.83, 1.22 t/ha, and 1.39 t/ha, respectively. The estimated values were found to be in good agreement with the measured ones. This shows high applicability of the proposed data assimilation scheme in crop monitoring and yield estimation. As well, this scheme provides a reference for the assimilation of remote sensing data into crop growth models for regional crop monitoring and yield estimation.

摘要

可以通过叶面积指数(LAI)和生物量等适当指标获取作物生长监测和产量估算信息。这些信息对于指导农业生产、确保粮食安全和维持可持续农业发展至关重要。传统的田间测量和监测方法通常效率低下,只能提供有限的不及时信息。相比之下,基于遥感技术的方法快速、客观且无损。实际上,遥感数据同化和作物生长建模代表了作物生长监测和产量估算的一个重要趋势。在这项研究中,我们将从 Sentinel-2 遥感数据中获取的叶面积指数同化到简单算法产量估计(SAFY)作物生长模型中。使用 SP-UCI 优化算法对 SAFY 的几个参数进行微调,包括出苗日期(D)、有效光能利用率(ELUE)和衰老温度阈值(STT),它表示生物衰老。这三个敏感参数的设置是为了使 SAFY 模型预测值与 LAI 反演值之间的误差函数达到全局最小值。这种将遥感数据同化到作物生长模型中,有利于 LAI、生物量和产量的估算。使用 2014 年和 2015 年收集的 48 个实验小区的数据对估算结果进行了验证。对于 2014 年的数据,LAI、生物量和产量的决定系数(R)分别为 0.73、0.83 和 0.49,相应的均方根误差(RMSE)值分别为 0.72、1.13t/ha 和 1.14t/ha。对于 2015 年的数据,LAI、生物量和产量的估计 R 值分别为 0.700、0.85 和 0.61,相应的 RMSE 值分别为 0.83、1.22t/ha 和 1.39t/ha。估计值与实测值吻合较好。这表明所提出的数据同化方案在作物监测和产量估算中具有很高的适用性。此外,该方案为将遥感数据同化到作物生长模型中以进行区域作物监测和产量估算提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4c/8971471/2444b0995ed8/41598_2022_9535_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验