文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

离子凝胶在柔性压力传感器中的研究进展:一篇综述

Progress of Ionogels in Flexible Pressure Sensors: A Mini-Review.

作者信息

Jiang Huaning, Cheng Yuqiang, Zhang Xingying, Li Mengqing, Wang Qinqin, Yang Liang, Shuai Changgeng

机构信息

Institute of Noise and Vibration, Naval University of Engineering, Wuhan 430030, China.

No. 32281 Unit of PLA, Chengdu 610200, China.

出版信息

Polymers (Basel). 2025 Apr 18;17(8):1093. doi: 10.3390/polym17081093.


DOI:10.3390/polym17081093
PMID:40284358
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12030016/
Abstract

This paper reviews the research progress on ionogels in flexible pressure sensors. Ionogels comprise solid carrier networks and ionic liquids (ILs) dispersed therein and have good non-volatility, high conductivity, thermal stability, a wide electrochemical window, and mechanical properties. These characteristics give ionogels broad application prospects in wearable electronic devices, intelligent robots, and healthcare. The article first introduces the classification of ionogels, including the classification based on ILs and solid carrier networks. Then, the preparation methods and processing technologies of ionogels, such as the direct mixing method, in situ polymerization/gel method, and solvent exchange method, are discussed. Subsequently, the article expounds in detail on the properties and modification methods of ionogels, including toughness, conductivity, hydrophobicity, self-healing, and adhesiveness. Finally, the article focuses on the application of ionogels in flexible pressure sensors and points out the challenges faced in future research. The language of this mini-review is academic but not overly technical, making it accessible to even researchers new to the field and establishing an overall impression of research. We believe this mini-review serves as a solid introductory resource for a niche topic, with large and clear references for further research.

摘要

本文综述了离子凝胶在柔性压力传感器中的研究进展。离子凝胶由固体载体网络和分散在其中的离子液体(ILs)组成,具有良好的不挥发性、高导电性、热稳定性、宽电化学窗口和机械性能。这些特性使离子凝胶在可穿戴电子设备、智能机器人和医疗保健领域具有广阔的应用前景。文章首先介绍了离子凝胶的分类,包括基于离子液体和固体载体网络的分类。然后,讨论了离子凝胶的制备方法和加工技术,如直接混合法、原位聚合/凝胶法和溶剂交换法。随后,文章详细阐述了离子凝胶的性能和改性方法,包括韧性、导电性、疏水性、自愈合性和粘附性。最后,文章重点介绍了离子凝胶在柔性压力传感器中的应用,并指出了未来研究面临的挑战。这篇综述文章的语言具有学术性,但不过于专业,即使是该领域的新手研究人员也能理解,并能建立起对该研究的整体印象。我们相信这篇综述文章为一个小众主题提供了坚实的入门资源,并为进一步研究提供了大量清晰的参考文献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/009a326947f8/polymers-17-01093-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/1298da19e20c/polymers-17-01093-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/59a640424a8f/polymers-17-01093-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/3ebfb4e815fa/polymers-17-01093-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/8fc61932eaa5/polymers-17-01093-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/7b92711862c2/polymers-17-01093-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/009a326947f8/polymers-17-01093-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/1298da19e20c/polymers-17-01093-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/59a640424a8f/polymers-17-01093-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/3ebfb4e815fa/polymers-17-01093-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/8fc61932eaa5/polymers-17-01093-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/7b92711862c2/polymers-17-01093-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6552/12030016/009a326947f8/polymers-17-01093-g006.jpg

相似文献

[1]
Progress of Ionogels in Flexible Pressure Sensors: A Mini-Review.

Polymers (Basel). 2025-4-18

[2]
Overview of Ionogels in Flexible Electronics.

Chem Rec. 2020-9

[3]
Ionogels for flexible conductive substrates and their application in biosensing.

Int J Biol Macromol. 2024-1

[4]
Transparent and Recyclable Ionogels Enabled by Dynamic Networks Containing Poly(Thioctic Acid) for Flexible Sensors.

Macromol Rapid Commun. 2025-2-26

[5]
A Transparent, Highly Stretchable, Solvent-Resistant, Recyclable Multifunctional Ionogel with Underwater Self-Healing and Adhesion for Reliable Strain Sensors.

Adv Mater. 2021-12

[6]
Advances in ionogels for proton-exchange membranes.

Sci Total Environ. 2024-4-15

[7]
Spider-Silk-Inspired Tough, Self-Healing, and Melt-Spinnable Ionogels.

Adv Sci (Weinh). 2024-1

[8]
Double-Cross-Linked and Stretchable Ionogels with Tunable Mechanics and Ionic Conductivity for Thermal and Mechanical Sensors.

ACS Appl Mater Interfaces. 2025-4-2

[9]
Ionogels, ionic liquid based hybrid materials.

Chem Soc Rev. 2010-12-22

[10]
Transparent, mechanically robust, conductive, self-healable, and recyclable ionogels for flexible strain sensors and electroluminescent devices.

RSC Adv. 2024-9-4

引用本文的文献

[1]
Novel Polymer Gels: Synthesis, Properties, and Applications.

Gels. 2025-8-1

本文引用的文献

[1]
Facile synthesis of ultratough conductive gels with swelling and freezing resistance for flexible sensor applications.

Sci Rep. 2025-3-1

[2]
Ionogel Adhesives: From Structural Design to Emerging Applications.

Macromol Rapid Commun. 2025-4

[3]
Deep eutectic solvent-based ionogel: Innovative potential as a promising chromatographic separation material.

Anal Chim Acta. 2025-3-8

[4]
Hybrid crosslinking cellulose nanofibers-reinforced zwitterionic poly (ionic liquid) organohydrogel with high-stretchable, anti-freezing, anti-drying as strain sensor application.

Carbohydr Polym. 2025-4-1

[5]
Developing tough, fatigue-resistant and conductive hydrogels growth of metal dendrites.

Mater Horiz. 2025-3-4

[6]
Supramolecular ionogels enable highly efficient electrochromism.

Mater Horiz. 2025-3-17

[7]
All-polymer piezo-ionic-electric electronics.

Nat Commun. 2024-12-30

[8]
Tough Polyurethane Hydrogels with a Multiple Hydrogen-Bond Interlocked Bicontinuous Phase Structure Prepared by In Situ Water-Induced Microphase Separation.

Adv Mater. 2025-2

[9]
Ion-Selective Mobility Differential Amplifier: Enhancing Pressure-Induced Voltage Response in Hydrogels.

Angew Chem Int Ed Engl. 2025-1-10

[10]
Self-healing electronic skin with high fracture strength and toughness.

Nat Commun. 2024-11-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索