文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种与卡介苗细胞质膜和黑色素瘤细胞膜杂交的仿生“特洛伊木马”样纳米囊泡递送系统用于癌症免疫治疗。

A Bionic "Trojan Horse"-like Nanovesicle Delivery System Hybridized with BCG Cytoplasmic Membrane and Melanoma Cell Membrane for Cancer Immunotherapy.

作者信息

Xiao Yuai, Chen Kexin, Hu Tianchi, Wang Yuchong, Wang Jing, Lv Chuan, Xu Jianguo, Zhang Xinyi, Li Ang, Chen Bingdi, Zhu Ji, Wu Minliang, Xue Chunyu

机构信息

Department of Plastic Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.

The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200331, China.

出版信息

Pharmaceutics. 2025 Apr 11;17(4):507. doi: 10.3390/pharmaceutics17040507.


DOI:10.3390/pharmaceutics17040507
PMID:40284501
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12030220/
Abstract

: In recent years, tumor vaccines have demonstrated unexpected success in cancer treatment. However, it still faces several challenges, including insufficient antigen and adjuvant delivery, unsuitable antigen delivery system, and inadequate antigen-presenting cell (APC) maturation. Antigenic adjuvant co-delivery tactics could be one way to enhance APC maturation. : Membrane-fused nanovesicles were synthesized by separating melanoma cell membranes from BCG cytoplasmic membranes. Dynamic light scattering and transmission electron microscopy were used for measuring the vesicles' size and shape. The uptake of vesicles by mouse bone marrow-derived dendritic cells and the activation of DC cells by vesicles were verified in vitro. In order to further confirm the material's capacity to activate the immune system and its ability to inhibit tumor growth, the activation of DC and T cells in mouse draining lymph nodes and the concentration of anti-tumor cytokines were measured. : The hybrid vesicles were homogeneous in size and could facilitate phagocytosis by dendritic cells (DCs). They could also effectively activate DCs and T cells in vitro and in vivo, eliciting anti-tumor immunity. Moreover, the vesicles demonstrated satisfying biosafety with no major side effects. : Motivated by the myth of the Trojan Horse, we created an antigen-adjuvant-integrated nanovesicle that merges the BCG cytomembrane with the tumor cell membrane, which can achieve immune cell stimulation and tumor antigen delivery simultaneously. In conclusion, these findings support the potential application of dual-membrane fusion nanovesicles as tumor vaccines.

摘要

近年来,肿瘤疫苗在癌症治疗中已展现出意想不到的成效。然而,它仍面临若干挑战,包括抗原和佐剂递送不足、抗原递送系统不合适以及抗原呈递细胞(APC)成熟度不够。抗原 - 佐剂共递送策略可能是增强APC成熟度的一种方式。

通过从卡介苗(BCG)细胞质膜分离黑色素瘤细胞膜合成了膜融合纳米囊泡。利用动态光散射和透射电子显微镜测量囊泡的大小和形状。在体外验证了小鼠骨髓来源的树突状细胞对囊泡的摄取以及囊泡对DC细胞的激活作用。为了进一步确认该材料激活免疫系统的能力及其抑制肿瘤生长的能力,测量了小鼠引流淋巴结中DC和T细胞的激活情况以及抗肿瘤细胞因子的浓度。

混合囊泡大小均匀,可促进树突状细胞(DCs)的吞噬作用。它们还能在体外和体内有效激活DCs和T细胞,引发抗肿瘤免疫。此外,这些囊泡表现出令人满意的生物安全性,无重大副作用。

受特洛伊木马神话的启发,我们创建了一种抗原 - 佐剂整合纳米囊泡,它将卡介苗细胞膜与肿瘤细胞膜融合,能够同时实现免疫细胞刺激和肿瘤抗原递送。总之,这些发现支持双膜融合纳米囊泡作为肿瘤疫苗的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/3b60e4661d80/pharmaceutics-17-00507-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/ab2164da704f/pharmaceutics-17-00507-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/12ccd5164bcb/pharmaceutics-17-00507-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/ea284d0f69f0/pharmaceutics-17-00507-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/58274b88b50c/pharmaceutics-17-00507-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/8f1a21b9ac97/pharmaceutics-17-00507-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/303b047a80a0/pharmaceutics-17-00507-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/3b60e4661d80/pharmaceutics-17-00507-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/ab2164da704f/pharmaceutics-17-00507-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/12ccd5164bcb/pharmaceutics-17-00507-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/ea284d0f69f0/pharmaceutics-17-00507-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/58274b88b50c/pharmaceutics-17-00507-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/8f1a21b9ac97/pharmaceutics-17-00507-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/303b047a80a0/pharmaceutics-17-00507-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f02/12030220/3b60e4661d80/pharmaceutics-17-00507-g006.jpg

相似文献

[1]
A Bionic "Trojan Horse"-like Nanovesicle Delivery System Hybridized with BCG Cytoplasmic Membrane and Melanoma Cell Membrane for Cancer Immunotherapy.

Pharmaceutics. 2025-4-11

[2]
"Trojan horse" nanoparticle-delivered cancer cell membrane vaccines to enhance cancer immunotherapy by overcoming immune-escape.

Biomater Sci. 2023-3-14

[3]
Application of lipid nanovesicle drug delivery system in cancer immunotherapy.

J Nanobiotechnology. 2022-5-6

[4]
Phenotypic profile of dendritic and T cells in the lymph node of Balb/C mice with breast cancer submitted to dendritic cells immunotherapy.

Immunol Lett. 2016-9

[5]
A self-adjuvant multiantigenic nanovaccines simultaneously activate the antiviral and antitumor immunity for the treatment of cancers.

J Nanobiotechnology. 2025-2-27

[6]
Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8 T cells.

Acta Biomater. 2019-4-17

[7]
Co-delivery of anionic epitope/CpG vaccine and IDO inhibitor by self-assembled cationic liposomes for combination melanoma immunotherapy.

J Mater Chem B. 2021-5-12

[8]
Dendritic cell hybrid nanovaccine for mild heat inspired cancer immunotherapy.

J Nanobiotechnology. 2023-9-26

[9]
Extracellular vesicles hybrid plasmid-loaded lipid nanovesicles for synergistic cancer immunotherapy.

Mater Today Bio. 2023-10-27

[10]
Soluble-microneedle enhance three T-cell activation signals as efficient tumor vaccines for melanoma prevention and treatment.

J Control Release. 2025-7-10

本文引用的文献

[1]
Kinetic cation effect in alkaline hydrogen electrocatalysis and double layer proton transfer.

Nat Commun. 2025-2-21

[2]
Adjuvants in cutaneous vaccination: A comprehensive analysis.

J Control Release. 2024-5

[3]
Cutaneous Hypersensitivity Reactions to Immune Checkpoint Inhibitors.

J Allergy Clin Immunol Pract. 2024-5

[4]
The quest for nanoparticle-powered vaccines in cancer immunotherapy.

J Nanobiotechnology. 2024-2-14

[5]
Hybrid Ginseng-derived Extracellular Vesicles-Like Particles with Autologous Tumor Cell Membrane for Personalized Vaccination to Inhibit Tumor Recurrence and Metastasis.

Adv Sci (Weinh). 2024-5

[6]
Dendritic cells as orchestrators of anticancer immunity and immunotherapy.

Nat Rev Clin Oncol. 2024-4

[7]
Genetically Engineered Cytomembrane Nanovaccines for Cancer Immunotherapy.

Adv Healthc Mater. 2024-5

[8]
Extracellular vesicles, genetic programmers.

Nat Cell Biol. 2024-1

[9]
Tumor-targeted suicide gene-directed enzyme prodrug therapy mediated by extracellular vesicles.

Neoplasma. 2023-6

[10]
Genetically Engineered-Cell-Membrane Nanovesicles for Cancer Immunotherapy.

Adv Sci (Weinh). 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索