文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于温和热刺激的树突细胞杂交纳米疫苗用于癌症免疫治疗。

Dendritic cell hybrid nanovaccine for mild heat inspired cancer immunotherapy.

机构信息

Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.

出版信息

J Nanobiotechnology. 2023 Sep 26;21(1):347. doi: 10.1186/s12951-023-02106-8.


DOI:10.1186/s12951-023-02106-8
PMID:37752555
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10521411/
Abstract

Cancer therapeutic vaccine can induce antigen-specific immune response, which has shown great potential in cancer immunotherapy. As the key factor of vaccine, antigen plays a central role in eliciting antitumor immunity. However, the insufficient antigen delivery and low efficiency of antigen presentation by dendritic cells (DCs) have greatly restricted the therapeutic efficiency of vaccine. Here we developed a kind of DC hybrid zinc phosphate nanoparticles to co-deliver antigenic peptide and photosensitive melanin. Owing to the chelating ability of Zn, the nanoparticles can co-encapsulate antigenic peptide and melanin with high efficiency. The nanovaccine showed good physiological stability with the hydration particle size was approximately 30 nm, and zeta potential was around - 10 mV. The nanovaccine showed homologous targeting effect to DCs in vivo and in vitro, efficiently delivering antigen to DCs. Meanwhile, the nanovaccine could effectively reflux to the tumor-draining lymph nodes. When combined with near-infrared irradiation, the nanovaccine induced effective mild heat in vitro and in vivo to promote antigen presentation. After administrating to MC38 tumor-bearing mice, the hybrid nanovaccine effectively promoted the maturation of DCs, the expansion of cytotoxic T lymphocytes and helper T cells, and the secretion of immunostimulatory cytokines, thereby significantly inhibiting tumor growth.

摘要

癌症治疗性疫苗可以诱导抗原特异性免疫反应,在癌症免疫治疗中显示出巨大的潜力。作为疫苗的关键因素,抗原在引发抗肿瘤免疫中起着核心作用。然而,树突状细胞(DCs)中抗原的递呈效率不足和抗原提呈效率低下极大地限制了疫苗的治疗效果。在这里,我们开发了一种 DC 混合磷酸锌纳米粒子来共递呈抗原肽和光敏黑色素。由于 Zn 的螯合能力,纳米粒子可以高效地共包封抗原肽和黑色素。纳米疫苗具有良好的生理稳定性,水合粒径约为 30nm,zeta 电位约为-10mV。纳米疫苗在体内和体外均表现出对 DCs 的同源靶向作用,将抗原有效地递送至 DCs。同时,纳米疫苗可以有效地回流到肿瘤引流淋巴结。当与近红外辐射结合时,纳米疫苗在体外和体内诱导有效的温和热以促进抗原呈递。将混合纳米疫苗给予 MC38 荷瘤小鼠后,有效促进了 DCs 的成熟、细胞毒性 T 淋巴细胞和辅助性 T 细胞的扩增以及免疫刺激性细胞因子的分泌,从而显著抑制肿瘤生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/4fe2b6b784b5/12951_2023_2106_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/e3125f6636ce/12951_2023_2106_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/351ffa6f47ef/12951_2023_2106_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/76a4e26e3034/12951_2023_2106_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/bd4304e2e4af/12951_2023_2106_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/67c3d660df15/12951_2023_2106_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/f741c68b826a/12951_2023_2106_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/cc601117a0c8/12951_2023_2106_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/4fe2b6b784b5/12951_2023_2106_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/e3125f6636ce/12951_2023_2106_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/351ffa6f47ef/12951_2023_2106_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/76a4e26e3034/12951_2023_2106_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/bd4304e2e4af/12951_2023_2106_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/67c3d660df15/12951_2023_2106_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/f741c68b826a/12951_2023_2106_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/cc601117a0c8/12951_2023_2106_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10521411/4fe2b6b784b5/12951_2023_2106_Fig7_HTML.jpg

相似文献

[1]
Dendritic cell hybrid nanovaccine for mild heat inspired cancer immunotherapy.

J Nanobiotechnology. 2023-9-26

[2]
Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy.

Biomaterials. 2020-3

[3]
Facile preparation of a metal-phenolic network-based lymph node targeting nanovaccine for antitumor immunotherapy.

Acta Biomater. 2023-3-1

[4]
Erythrocyte Membrane-Enveloped Polymeric Nanoparticles as Nanovaccine for Induction of Antitumor Immunity against Melanoma.

ACS Nano. 2015-7-14

[5]
Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for personalized immunotherapy.

Acta Biomater. 2022-3-15

[6]
Elastic Nanovaccine Enhances Dendritic Cell-Mediated Tumor Immunotherapy.

Small. 2022-8

[7]
Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase.

Biomaterials. 2018-4-21

[8]
Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy.

Biomaterials. 2016-5-5

[9]
Identification of a novel DEC-205 binding peptide to develop dendritic cell-targeting nanovaccine for cancer immunotherapy.

J Control Release. 2024-9

[10]
Minimalist Nanovaccine with Optimized Amphiphilic Copolymers for Cancer Immunotherapy.

ACS Nano. 2024-1-30

引用本文的文献

[1]
Tumor Treatment by Nano-Photodynamic Agents Embedded in Immune Cell Membrane-Derived Vesicles.

Pharmaceutics. 2025-4-7

[2]
Tumor-draining lymph nodes: opportunities, challenges, and future directions in colorectal cancer immunotherapy.

J Immunother Cancer. 2024-1-19

本文引用的文献

[1]
Magnetic nanoparticle swarm with upstream motility and peritumor blood vessel crossing ability.

Nanoscale. 2023-9-1

[2]
Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles.

Adv Drug Deliv Rev. 2023-3

[3]
Immune-based combination therapy for esophageal cancer.

Front Immunol. 2022

[4]
Lymph node-targeting nanovaccines for cancer immunotherapy.

J Control Release. 2022-11

[5]
The influence of component structural arrangement on peptide vaccine immunogenicity.

Biotechnol Adv. 2022-11

[6]
Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors.

Int J Mol Sci. 2022-6-30

[7]
Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging.

Chem Soc Rev. 2022-6-20

[8]
Checkpoint inhibitor/interleukin-based combination therapy of cancer.

Cancer Med. 2022-8

[9]
Amino-Acid-Encoded Supramolecular Photothermal Nanomedicine for Enhanced Cancer Therapy.

Adv Mater. 2022-4

[10]
Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions.

Int J Mol Sci. 2022-1-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索