Rawojć Kamila, Ahmed Mansoor M, Mukhtiar Ayesha, Łukowiak Magdalena, Kisielewicz Kamil
National Institute of Oncology, Maria Sklodowska-Curie Memorial Institute, 31-115 Cracow, Poland.
Albert Einstein College of Medicine, Montefiore Einstein, New York, NY 10461, USA.
Pharmaceutics. 2025 Apr 11;17(4):508. doi: 10.3390/pharmaceutics17040508.
Glioblastoma multiforme remains one of the most aggressive and treatment-resistant brain tumors that necessitate innovative therapeutic approaches. Nanomedicine has emerged as a promising strategy to enhance radiation therapy by improving drug delivery, radiosensitization, and real-time treatment monitoring. Stimuli-responsive nanoparticles can overcome limitations of the blood-brain barrier, modulate tumor microenvironment, and facilitate targeted therapeutic interventions. The integration of nanotechnology with proton and X-ray radiotherapy offers improved dose precision, enhanced radiosensitization, and adaptive treatment strategies. Furthermore, Artificial Intelligence-driven nanoparticle designs are optimizing therapeutic outcomes by tailoring formulations to tumor-specific characteristics. While promising, clinical translation remains a challenge that requires rigorous validation to ensure safety and efficacy. This review highlights advancements in nanomedicine-enhanced radiotherapy and future directions for glioblastoma multiforme treatment.
多形性胶质母细胞瘤仍然是最具侵袭性和治疗抵抗性的脑肿瘤之一,需要创新的治疗方法。纳米医学已成为一种有前景的策略,可通过改善药物递送、放射增敏和实时治疗监测来增强放射治疗。刺激响应性纳米颗粒可以克服血脑屏障的限制,调节肿瘤微环境,并促进靶向治疗干预。纳米技术与质子和X射线放射治疗的整合提供了更高的剂量精度、增强的放射增敏作用和适应性治疗策略。此外,人工智能驱动的纳米颗粒设计通过根据肿瘤特异性特征定制制剂来优化治疗效果。尽管前景广阔,但临床转化仍然是一项挑战,需要进行严格验证以确保安全性和有效性。本综述重点介绍了纳米医学增强放射治疗的进展以及多形性胶质母细胞瘤治疗的未来方向。