Guo Yigong, Baldelli Alberto, Shi Dai, Kitts David D, Pratap-Singh Anubhav, Singh Anika
Natural Health and Food Products Research Group, Centre for Applied Research and Innovation (CARI), British Columbia Institute of Technology, 4355 Mathissi Pl, Burnaby, BC V5G 4S8, Canada.
Food, Nutrition, and Health, Faculty of Land & Food Systems, 2205 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
Pharmaceutics. 2025 Apr 21;17(4):537. doi: 10.3390/pharmaceutics17040537.
COVID-19 infection continues globally, with frequent emergence of unfamiliar SARS-CoV-2 variants acting to impair immunity. The competitive binding of SARS-CoV-2 spike proteins and angiotensin-converting enzyme 2 (ACE-2) can decrease the binding of the virus on native ACE-2 receptors on healthy human cells. It remains a practical approach to lessen viral spread. In this study, a method to encapsulate ACE-2 in the form of chitosan/tripolyphosphate cross-linked nanoparticles (NPs) was developed with emphasis placed on the best dehydration method to secure functional ACE-2 nanoparticles. Methods: Preparation conditions were assessed by varying pH (4.0-6.5) and the ratio between chitosan and ACE-2 mixing ratios (1:1, 1.5:1, 2:1, 2.5:1, and 3:1). The formulated NPs were then dehydrated using different approaches that included spray-drying (SD), freeze-drying (FD), and spray-freeze drying (SFD) and used varying mannitol concentrations (0, 1:1, and 5:1 of total weight). The mannitol was served as a cryoprotectant in this study. The best formulation achieved used a pH 5.5 with a mixing chitosan-ACE-2 ratio of 2:1, where ACE-2-loaded NPs had an average particle size of 303.7 nm, polydispersity index (PDI) of 0.21, encapsulation efficiency (EE) of 98.4%, and ACE-2 loading content (LC) of 28.4%. After reconstitution, all SD samples had a relatively low yield rate, but the ACE-2 NPs dehydrated specifically using SFD required a lower amount of added mannitol (1:1 of its total weight) and produced a higher yield rate ( < 0.05) and similar PDI and EE values, along with relatively good particle size and LC. This formulation also produced a high ACE-2 release and uptake in differentiated Caco-2 cells, thus representing an effective ACE-2 encapsulation procedure for use with dry powders. This work showed that spray-freeze drying was the best method to dehydrate ACE-2 NPs, using less cryoprotectant to create a significant advantage in terms of greater loading capacity with lower additive requirements.
新冠病毒感染在全球范围内持续存在,新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变体频繁出现,影响免疫力。SARS-CoV-2刺突蛋白与血管紧张素转换酶2(ACE-2)的竞争性结合会减少病毒与健康人细胞上天然ACE-2受体的结合。这仍然是减少病毒传播的一种切实可行的方法。在本研究中,开发了一种以壳聚糖/三聚磷酸交联纳米颗粒(NPs)形式封装ACE-2的方法,重点在于确保功能性ACE-2纳米颗粒的最佳脱水方法。方法:通过改变pH值(4.0 - 6.5)以及壳聚糖与ACE-2的混合比例(1:1、1.5:1、2:1、2.5:1和3:1)来评估制备条件。然后使用不同方法对制备的纳米颗粒进行脱水,包括喷雾干燥(SD)、冷冻干燥(FD)和喷雾冷冻干燥(SFD),并使用不同的甘露醇浓度(占总重量的0、1:1和5:1)。在本研究中,甘露醇用作冷冻保护剂。最佳配方采用pH 5.5,壳聚糖与ACE-2的混合比例为2:1,其中负载ACE-2的纳米颗粒平均粒径为303.7 nm,多分散指数(PDI)为0.21,包封率(EE)为98.4%,ACE-2负载量(LC)为28.4%。复溶后,所有喷雾干燥样品的产率相对较低,但采用喷雾冷冻干燥法专门脱水的ACE-2纳米颗粒所需添加的甘露醇量较少(占其总重量的1:1),产率较高(<0.05),且具有相似的PDI和EE值,以及相对较好的粒径和LC。该配方在分化的Caco-2细胞中也具有较高的ACE-2释放和摄取量,因此代表了一种适用于干粉的有效ACE-2封装方法。这项工作表明,喷雾冷冻干燥是ACE-2纳米颗粒脱水的最佳方法,使用较少的冷冻保护剂,在更高的负载能力和更低的添加剂需求方面具有显著优势。