文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Effect of Tibialis Anterior Neuromuscular Electrical Stimulation-Induced Eccentric Contraction Training on Single-Leg Standing: A Pilot Study.

作者信息

Jeong Nayoung, Kim Doyeol, Hwang Seonhong, Son Jongsang

机构信息

Department of Physical Therapy, Graduate School, Hoseo University, Asan 31499, Republic of Korea.

Research Institute for Basic Sciences, Hoseo University, Asan 31499, Republic of Korea.

出版信息

Sensors (Basel). 2025 Apr 13;25(8):2455. doi: 10.3390/s25082455.


DOI:10.3390/s25082455
PMID:40285145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12031232/
Abstract

This study explored the impact of a four-week Neuromuscular Electrical Stimulation (NMES)-induced eccentric contraction training on single-leg standing balance and muscle strength in 17 healthy adults. The unique training approach involved active antagonist muscle contraction during NMES. Post-training results revealed significant improvements in balance, with notable reductions in Center of Pressure (CoP) trajectory velocity (mean reduction: 0.07 ± 0.01 cm/s, < 0.05) and range (mean reduction: 2.98 ± 0.53 cm, < 0.05) on a firm surface. While increases in dorsiflexion force (mean increase: 21.43 ± 0.79 N, < 0.05) and muscle activation were observed, these were not statistically significant. Changes in muscle pennation angles were also not significant (mean change: 0.43 ± 0.06 degrees, > 0.05), underscoring the complexity of muscle adaptation processes. This study highlights NMES's potential in enhancing balance and proprioceptive sensing, suggesting its promising applications in neuromuscular rehabilitation. However, further research is needed to fully understand its impact.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/8f4109e7c5c3/sensors-25-02455-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/f61823c2b127/sensors-25-02455-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/cb4f81a90068/sensors-25-02455-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/242f3e862042/sensors-25-02455-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/d65225fd6760/sensors-25-02455-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/964155cdf408/sensors-25-02455-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/005fe262a404/sensors-25-02455-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/aa719aaae2a1/sensors-25-02455-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/7727207efdd5/sensors-25-02455-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/03ad2642426f/sensors-25-02455-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/da750e5f04b9/sensors-25-02455-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/8f4109e7c5c3/sensors-25-02455-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/f61823c2b127/sensors-25-02455-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/cb4f81a90068/sensors-25-02455-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/242f3e862042/sensors-25-02455-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/d65225fd6760/sensors-25-02455-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/964155cdf408/sensors-25-02455-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/005fe262a404/sensors-25-02455-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/aa719aaae2a1/sensors-25-02455-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/7727207efdd5/sensors-25-02455-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/03ad2642426f/sensors-25-02455-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/da750e5f04b9/sensors-25-02455-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4f/12031232/8f4109e7c5c3/sensors-25-02455-g011.jpg

相似文献

[1]
Effect of Tibialis Anterior Neuromuscular Electrical Stimulation-Induced Eccentric Contraction Training on Single-Leg Standing: A Pilot Study.

Sensors (Basel). 2025-4-13

[2]
Ultrasonographic quantification of architectural response in tibialis anterior to neuromuscular electrical stimulation.

J Electromyogr Kinesiol. 2017-10

[3]
Short-Term effects of neuromuscular electrical stimulation on muscle architecture of the tibialis anterior and gastrocnemius in children with cerebral palsy: preliminary results of a prospective controlled study.

Am J Phys Med Rehabil. 2015-9

[4]
[Analysis of the effect of neuromuscular electrical stimulation on corticomuscular coupling during standing balance].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024-12-25

[5]
Muscle co-contraction in elderly people change due to postural stability during single-leg standing.

J Physiol Anthropol. 2017-12-16

[6]
Short-TERM Neuromuscular Electrical Stimulation Training of the Tibialis Anterior Did Not Improve Strength and Motor Function in Facioscapulohumeral Muscular Dystrophy Patients.

Am J Phys Med Rehabil. 2017-4

[7]
Effects of Neuromuscular Electrical Stimulation and Resistance Training on Knee Extensor/Flexor Muscles.

Coll Antropol. 2015-7

[8]
Effect of balance training on neuromuscular function at rest and during isometric maximum voluntary contraction.

Eur J Appl Physiol. 2015-5

[9]
Fine-wire electromyography response to neuromuscular electrical stimulation in the triceps surae.

IEEE Trans Neural Syst Rehabil Eng. 2015-3

[10]
Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

Maturitas. 2016-9

本文引用的文献

[1]
Effect of Eccentric Exercise on Metabolic Health in Diabetes and Obesity.

Sports Med Open. 2023-9-29

[2]
Effects of eccentric, concentric and eccentric/concentric training on muscle function and mass, functional performance, cardiometabolic health, quality of life and molecular adaptations of skeletal muscle in COPD patients: a multicentre randomised trial.

BMC Pulm Med. 2022-7-19

[3]
Effects of Upper Body Eccentric versus Concentric Strength Training and Detraining on Maximal Force, Muscle Activation, Hypertrophy and Serum Hormones in Women.

J Sports Sci Med. 2022-6

[4]
Eccentric-only versus concentric-only resistance training effects on biochemical and physiological parameters in patients with type 2 diabetes.

BMC Sports Sci Med Rehabil. 2021-12-20

[5]
Transcriptomic adaptation during skeletal muscle habituation to eccentric or concentric exercise training.

Sci Rep. 2021-12-14

[6]
A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code.

Physiol Rep. 2021-11

[7]
The effect of resistance training set configuration on strength and muscular performance adaptations in male powerlifters.

Sci Rep. 2021-4-12

[8]
Aerobic Metabolic Adaptations in Endurance Eccentric Exercise and Training: From Whole Body to Mitochondria.

Front Physiol. 2021-1-27

[9]
Eccentric training combined to neuromuscular electrical stimulation is not superior to eccentric training alone for quadriceps strengthening in healthy subjects: a randomized controlled trial.

Braz J Phys Ther. 2018-3-28

[10]
Neuromuscular Electrical Stimulation for Treatment of Muscle Impairment: Critical Review and Recommendations for Clinical Practice.

Physiother Can. 2017

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索