Han Chan Sik, Kim HyungWon, Lee Keon Myung
Department of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea.
Department of Electronics Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea.
Sensors (Basel). 2025 Apr 16;25(8):2510. doi: 10.3390/s25082510.
Sensors generate extensive time series data across various domains, and effective methods for detecting anomalies in such data are still in high demand. Unsupervised time series anomaly detection provides practical approaches to addressing the challenges of collecting anomalous data. For effective anomaly detection, a range of deep-learning-based models have been explored to handle temporal patterns inherent in time series data. In particular, Transformer encoders have gained significant attention due to their ability to efficiently capture temporal dependencies. Various studies have attempted the architectural improvements of Transformer encoders to address the inherent complexity of time series data analysis. Unlike the previous studies, this work demonstrates that a vanilla Transformer encoder-based framework remains yet a competitive model for time series anomaly detection. Instead of architectural modification of the Transformer encoder, we identify key design choices and propose an asymmetric autoencoder-based framework incorporating those design choices with a vanilla Transformer encoder and a linear layer decoder. The proposed framework has been evaluated on a range of unsupervised time series anomaly detection benchmarks, and the experimental results show that it achieves performance that is either superior or competitive compared to state-of-the-art models.
传感器在各个领域生成大量时间序列数据,因此仍然急需有效的方法来检测此类数据中的异常情况。无监督时间序列异常检测为应对收集异常数据的挑战提供了实用方法。为了进行有效的异常检测,人们探索了一系列基于深度学习的模型来处理时间序列数据中固有的时间模式。特别是,Transformer编码器因其能够有效捕捉时间依赖性而备受关注。各种研究尝试对Transformer编码器进行架构改进,以应对时间序列数据分析的固有复杂性。与之前的研究不同,这项工作表明基于普通Transformer编码器的框架仍然是时间序列异常检测的一个有竞争力的模型。我们没有对Transformer编码器进行架构修改,而是确定了关键设计选择,并提出了一个基于非对称自动编码器的框架,将这些设计选择与普通Transformer编码器和线性层解码器相结合。所提出的框架在一系列无监督时间序列异常检测基准上进行了评估,实验结果表明,与当前的先进模型相比,它实现了卓越或具有竞争力的性能。