Suppr超能文献

人工智能时代基于摩擦纳米发电机的自供电传感器的高级应用探索

Exploration of Advanced Applications of Triboelectric Nanogenerator-Based Self-Powered Sensors in the Era of Artificial Intelligence.

作者信息

Su Yifeng, Yin Dezhi, Zhao Xinmao, Hu Tong, Liu Long

机构信息

Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China.

School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Sensors (Basel). 2025 Apr 17;25(8):2520. doi: 10.3390/s25082520.

Abstract

The integration of Deep Learning with sensor technologies has significantly advanced the field of intelligent sensing and decision making by enhancing perceptual capabilities and delivering sophisticated data analysis and processing functionalities. This review provides a comprehensive overview of the synergy between Deep Learning and sensors, with a particular focus on the applications of triboelectric nanogenerator (TENG)-based self-powered sensors combined with artificial intelligence (AI) algorithms. First, the evolution of Deep Learning is reviewed, highlighting the advantages, limitations, and application domains of several classical models. Next, the innovative applications of intelligent sensors in autonomous driving, wearable devices, and the Industrial Internet of Things (IIoT) are discussed, emphasizing the critical role of neural networks in enhancing sensor precision and intelligent processing capabilities. The review then delves into TENG-based self-powered sensors, introducing their self-powered mechanisms based on contact electrification and electrostatic induction, material selection strategies, novel structural designs, and efficient energy conversion methods. The integration of TENG-based self-powered sensors with Deep Learning algorithms is showcased through their groundbreaking applications in motion recognition, smart healthcare, smart homes, and human-machine interaction. Finally, future research directions are outlined, including multimodal data fusion, edge computing integration, and brain-inspired neuromorphic computing, to expand the application of self-powered sensors in robotics, space exploration, and other high-tech fields. This review offers theoretical and technical insights into the collaborative innovation of Deep Learning and self-powered sensor technologies, paving the way for the development of next-generation intelligent systems.

摘要

深度学习与传感器技术的整合通过增强感知能力以及提供复杂的数据分析和处理功能,显著推动了智能传感与决策领域的发展。本综述全面概述了深度学习与传感器之间的协同作用,特别关注基于摩擦纳米发电机(TENG)的自供电传感器与人工智能(AI)算法的应用。首先,回顾了深度学习的发展历程,突出了几种经典模型的优势、局限性和应用领域。接下来,讨论了智能传感器在自动驾驶、可穿戴设备和工业物联网(IIoT)中的创新应用,强调了神经网络在提高传感器精度和智能处理能力方面的关键作用。然后,本综述深入探讨了基于TENG的自供电传感器,介绍了其基于接触起电和静电感应的自供电机制、材料选择策略、新颖的结构设计和高效的能量转换方法。基于TENG的自供电传感器与深度学习算法的整合通过其在运动识别、智能医疗、智能家居和人机交互等方面的开创性应用得以展示。最后,概述了未来的研究方向,包括多模态数据融合、边缘计算集成和受脑启发的神经形态计算,以扩大自供电传感器在机器人技术、太空探索和其他高科技领域的应用。本综述为深度学习与自供电传感器技术的协同创新提供了理论和技术见解,为下一代智能系统的发展铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94c6/12031394/1abe49d726ed/sensors-25-02520-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验