Suppr超能文献

使用调谐梁式惯性测量单元传感设备进行基于振动的非接触式活动分类以用于笼内监测

Vibration-Based Non-Contact Activity Classification for Home Cage Monitoring Using a Tuned-Beam IMU Sensing Device.

作者信息

Try Pieter, Tolba René H, Gebhard Marion

机构信息

Department of Electrical Engineering and Applied Sciences, Westphalian University of Applied Sciences, 45897 Gelsenkirchen, Germany.

Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen University, 52074 Aachen, Germany.

出版信息

Sensors (Basel). 2025 Apr 17;25(8):2549. doi: 10.3390/s25082549.

Abstract

This work presents a vibration-based non-contact monitoring method to classify the physical activity of a mouse inside a home cage. A novel tuned-beam sensing device is developed to measure low-amplitude activity-induced cage vibrations. The sensing device uses a mechanical beam structure to enhance a six-axis IMU that increases the signal-to-noise ratio (SNR) by 20 to 40 times in a relevant environment. A sophisticated classification algorithm is developed to process vibration sequences with a variable time frame that utilizes multi-level discrete wavelet transformation (MLDWT) to extract time-frequency features and optimize signal properties. The extracted features are classified by a convolutional neural network-long short-term memory (CNN-LSTM) machine learning model to determine the activity class. The ground truth is obtained with a camera-based system using EthoVision XT from Noldus and a custom post-processor. The method is developed on a dataset containing 300 h of vibration measurements with camera-based reference and includes two separate home cages and two individual mice. The method classifies the activity types Resting, Stationary Activity, Walking, Activity in Feeder, and Drinking with an accuracy of 86.81% and an average F1 score of 0.798 using a 9 s time frame. In long-term monitoring, the proposed method reproduces behavioral patterns such as sleep and acclimatization as accurately as the reference method, enabling home cage monitoring in the husbandry environment with a low-cost sensor.

摘要

这项工作提出了一种基于振动的非接触式监测方法,用于对家笼内小鼠的身体活动进行分类。开发了一种新型调谐梁传感装置来测量低幅度活动引起的笼子振动。该传感装置使用机械梁结构来增强六轴惯性测量单元(IMU),在相关环境中将信噪比(SNR)提高20至40倍。开发了一种复杂的分类算法来处理具有可变时间框架的振动序列,该算法利用多级离散小波变换(MLDWT)来提取时频特征并优化信号特性。提取的特征由卷积神经网络-长短期记忆(CNN-LSTM)机器学习模型进行分类,以确定活动类别。通过使用来自Noldus的EthoVision XT和自定义后处理器的基于摄像头的系统获得地面真值。该方法是在一个包含300小时基于摄像头参考的振动测量数据集上开发的,包括两个单独的家笼和两只单独的小鼠。该方法使用9秒的时间框架对休息、静止活动、行走、在喂食器处活动和饮水等活动类型进行分类,准确率为86.81%,平均F1分数为0.798。在长期监测中,所提出的方法能够像参考方法一样准确地再现睡眠和适应等行为模式,从而能够使用低成本传感器在家养环境中进行家笼监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11aa/12031411/382de9d7a463/sensors-25-02549-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验