Suppr超能文献

基于测量边界的车道中心线提取:一种使用最大圆盘的高效方法。

Lane Centerline Extraction Based on Surveyed Boundaries: An Efficient Approach Using Maximal Disks.

作者信息

Yin Chenhui, Cecotti Marco, Auger Daniel J, Fotouhi Abbas, Jiang Haobin

机构信息

School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China.

Advanced Vehicle Engineering Centre, Cranfield University, Cranfield MK43 0AL, UK.

出版信息

Sensors (Basel). 2025 Apr 18;25(8):2571. doi: 10.3390/s25082571.

Abstract

Maps of road layouts play an essential role in autonomous driving, and it is often advantageous to represent them in a compact form, using a sparse set of surveyed points of the lane boundaries. While lane centerlines are valuable references in the prediction and planning of trajectories, most centerline extraction methods only achieve satisfactory accuracy with high computational cost and limited performance in sparsely described scenarios. This paper explores the problem of centerline extraction based on a sparse set of border points, evaluating the performance of different approaches on both a self-created and a public dataset, and proposing a novel method to extract the lane centerline by searching and linking the internal maximal circles along the lane. Compared with other centerline extraction methods producing similar numbers of center points, the proposed approach is significantly more accurate: in our experiments, based on a self-created dataset of road layouts, it achieves a max deviation below 0.15 m and an overall RMSE less than 0.01 m, against the respective values of 1.7 m and 0.35 m for a popular approach based on Voronoi tessellation, and 1 m and 0.25 m for an alternative approach based on distance transform.

摘要

道路布局地图在自动驾驶中起着至关重要的作用,以紧凑的形式表示它们通常是有利的,即使用车道边界的稀疏测量点集。虽然车道中心线在轨迹预测和规划中是有价值的参考,但大多数中心线提取方法仅在高计算成本下才能达到令人满意的精度,并且在稀疏描述的场景中性能有限。本文探讨了基于稀疏边界点集的中心线提取问题,在自建数据集和公共数据集上评估了不同方法的性能,并提出了一种通过搜索和连接沿车道的内部最大圆来提取车道中心线的新方法。与产生相似数量中心点的其他中心线提取方法相比,所提出的方法明显更准确:在我们的实验中,基于自建的道路布局数据集,它实现了最大偏差低于0.15米,总体均方根误差小于0.01米,而基于Voronoi镶嵌的流行方法的相应值分别为1.7米和0.35米,基于距离变换的替代方法的相应值为1米和0.25米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb22/12031461/225bc7fcdd58/sensors-25-02571-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验