Suppr超能文献

自动驾驶车辆基于视觉的多任务感知研究方法综述

A Review of Vision-Based Multi-Task Perception Research Methods for Autonomous Vehicles.

作者信息

Wang Hai, Li Jiayi, Dong Haoran

机构信息

The School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China.

出版信息

Sensors (Basel). 2025 Apr 20;25(8):2611. doi: 10.3390/s25082611.

Abstract

Multi-task perception technology for autonomous driving significantly improves the ability of autonomous vehicles to understand complex traffic environments by integrating multiple perception tasks, such as traffic object detection, drivable area segmentation, and lane detection. The collaborative processing of these tasks not only improves the overall performance of the perception system but also enhances the robustness and real-time performance of the system. In this paper, we review the research progress in the field of vision-based multi-task perception for autonomous driving and introduce the methods of traffic object detection, drivable area segmentation, and lane detection in detail. Moreover, we discuss the definition, role, and classification of multi-task learning. In addition, we analyze the design of classical network architectures and loss functions for multi-task perception, introduce commonly used datasets and evaluation metrics, and discuss the current challenges and development prospects of multi-task perception. By analyzing these contents, this paper aims to provide a comprehensive reference framework for researchers in the field of autonomous driving and encourage more research work on multi-task perception for autonomous driving.

摘要

用于自动驾驶的多任务感知技术通过整合多个感知任务,如交通目标检测、可行驶区域分割和车道检测,显著提高了自动驾驶车辆理解复杂交通环境的能力。这些任务的协同处理不仅提高了感知系统的整体性能,还增强了系统的鲁棒性和实时性能。在本文中,我们回顾了基于视觉的自动驾驶多任务感知领域的研究进展,并详细介绍了交通目标检测、可行驶区域分割和车道检测的方法。此外,我们讨论了多任务学习的定义、作用和分类。另外,我们分析了多任务感知的经典网络架构和损失函数的设计,介绍了常用的数据集和评估指标,并讨论了多任务感知当前面临的挑战和发展前景。通过分析这些内容,本文旨在为自动驾驶领域的研究人员提供一个全面的参考框架,并鼓励开展更多关于自动驾驶多任务感知的研究工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed5e/12030850/f924ceb85f98/sensors-25-02611-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验