Suppr超能文献

低收入和中等收入国家中用于艾滋病毒检测及关联服务的社交网络干预措施的关键设计特征与效果:一项系统评价和荟萃分析

The key design features and effectiveness of social network interventions for HIV testing and linkage services in low- and middle-income countries: a systematic review and meta-analysis.

作者信息

Mukoka Madalo, Msosa Takondwa C, Twabi Hussein H, Semphere Robina, Nliwasa Marriott, Harling Guy, Price Alison, Fielding Katherine, Choko Augustine T

机构信息

Helse Nord Tuberculosis Initiative, Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi.

Department of Infectious Disease Epidemiology and International Health, London School of Hygiene and Tropical Medicine, London, UK.

出版信息

J Int AIDS Soc. 2025 May;28(5):e26458. doi: 10.1002/jia2.26458.

Abstract

INTRODUCTION

HIV remains a global health challenge with a reported 39 million people living with HIV (PLHIV) in 2022. Sub-Saharan Africa, Asia and the Pacific are home to 82% of PLHIV, where limited access to healthcare resources underscores the urgency of innovative strategies to combat the epidemic effectively. Social network interventions (SNIs) hold promise for improving HIV testing and linkage services by engaging populations at greatest risk. This review evaluates the key design features and effectiveness of SNIs for HIV testing and linkage in low- and middle-income countries (LMICs).

METHODS

We searched four databases (Medline, Embase, Global Health, Web of Science) for the period from 1st January 2003 until 16th June 2023. A combination of the terms "Social Network," "HIV," "testing" and "linkage" with an LMIC filter was used. We included interventional study designs that compared an SNI for HIV testing and/or linkage to care against non-network comparator approaches. Narrative synthesis and random effects meta-analyses were conducted to synthesize the results.

RESULTS

Of the 6763 records, 13 studies met the inclusion criteria; eight were randomized controlled trials, and five were non-randomized designs. Nine studies engaged key populations. The most common strategy involved recruiting and training seeds, who then delivered HIV services to network members. The use of networks varied significantly across the papers. The network approaches used were induction (n = 11), alteration (n = 1) and a combination of individual and segmentation approaches (n = 1). The pooled estimates showed that SNIs had a modest effect on the uptake of HIV testing RR 1.12 [95% CI 1.08-1.17) but the directionality of effect for the proportion newly diagnosed positive (RR 0.88 [95% CI 0.74-1.04]) and linkage to care (RR 0.98 [95% CI 0.86-1.08]) was towards the null.

DISCUSSION

SNIs improved the uptake of HIV testing and exhibit important variability in their design.

CONCLUSIONS

There is a need for more studies designed to capture the complex relational dynamics of network interventions and to provide strong evidence on their isolated effects. Additionally, it is necessary to expand the use of network approaches to other priority populations.

PROSPERO NUMBER

CRD42023434770.

摘要

引言

艾滋病病毒(HIV)仍然是一项全球性的健康挑战,据报告,2022年有3900万人感染HIV。撒哈拉以南非洲、亚洲及太平洋地区居住着全球82%的HIV感染者,这些地区医疗资源获取有限,凸显了有效抗击该流行病的创新策略的紧迫性。社交网络干预措施(SNIs)有望通过接触风险最高的人群来改善HIV检测及关联服务。本综述评估了SNIs在低收入和中等收入国家(LMICs)用于HIV检测及关联服务的关键设计特征和有效性。

方法

我们检索了四个数据库(Medline、Embase、Global Health、Web of Science),检索时间段为2003年1月1日至2023年6月16日。使用了“社交网络”“HIV”“检测”和“关联”等术语,并设置了LMICs筛选条件。我们纳入了将用于HIV检测和/或关联护理的SNI与非网络对照方法进行比较的干预性研究设计。进行了叙述性综合分析和随机效应荟萃分析以综合结果。

结果

在6763条记录中,13项研究符合纳入标准;8项为随机对照试验,5项为非随机设计。9项研究涉及关键人群。最常见的策略是招募和培训“种子”,然后由他们向网络成员提供HIV服务。各论文中网络的使用差异很大。所采用的网络方法有诱导法(n = 11)、变更法(n = 1)以及个体与细分方法相结合(n = 1)。汇总估计显示,SNIs对HIV检测的接受率有适度影响(风险比RR 1.12 [95%置信区间CI 1.08 - 1.17]),但对新诊断为阳性的比例(RR 0.88 [95% CI 0.74 - 1.04])和关联护理(RR 0.98 [95% CI 0.86 - 1.08])的影响方向趋近于无效。

讨论

SNIs提高了HIV检测的接受率,且在设计上表现出重要的变异性。

结论

需要开展更多研究,以把握网络干预措施复杂的关系动态,并为其单独效果提供有力证据。此外,有必要将网络方法的应用扩展到其他重点人群。

国际系统评价注册编号

CRD42023434770。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12eb/12031894/e6698a6ca812/JIA2-28-e26458-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验